Segregation of the InDel Mutation in IRF2BP2 Discriminating Fleece Type in North African and Iranian Sheep Breeds
محورهای موضوعی : CamelF.Z. Belharfi 1 , S. Kdidi 2 , N. Tabet-Aoul 3 , A. Ameur Ameur 4 , A. Djaout 5 , M. Hammadi 6 , J. Sarry 7 , F. Woloszyn 8 , S. Fabre 9 , R. Talebi 10 , T. Khorchani 11 , M.H. Yahyaoui 12 , S.S.B. Gaouar 13
1 - Department of Biology, Laboratory of Applied Genetics in Agronomy, Ecology and Public health (GenApAgiE), Abou Bekr Belkaid University, Tlemcen,13000, Algeria
2 - Livestock and Wildlife Laboratory, Institut des Régions Arides, University of Gabes, Tunisia
3 - Laboratory of Molecular Biology and Genetics USTO, Oran, 31.000, Algeria
4 - Department of Biology, Laboratory of Applied Genetics in Agronomy, Ecology and Public health (GenApAgiE), Abou Bekr Belkaid University, Tlemcen,13000, Algeria
5 - Department of Biology, Laboratory of Applied Genetics in Agronomy, Ecology and Public health (GenApAgiE), Abou Bekr Belkaid University, Tlemcen,13000, Algeria; Institut National de la Recherche Agronomique d’Algérie (INRAA), Sétif, 19.000, Algérie; Laboratoire de Production Animale, Biotechnologie et Santé (PABIOS), Institut des Sciences Agrovétérinaires (ISAV), Université Mohammed Cherif Messaadia, Souk-Ahras, 41.000, Algérie
6 - Livestock and Wildlife Laboratory, Institut des Régions Arides, University of Gabes, Tunisia
7 - GenPhySE, Toulouse University, INRA, INPT, ENVT, Castanet-Tolosan, France
8 - GenPhySE, Toulouse University, INRA, INPT, ENVT, Castanet-Tolosan, France
9 - GenPhySE, Toulouse University, INRA, INPT, ENVT, Castanet-Tolosan, France
10 - Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran; Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
11 - Livestock and Wildlife Laboratory, Institut des Régions Arides, University of Gabes, Tunisia
12 - Livestock and Wildlife Laboratory, Institut des Régions Arides, University of Gabes, Tunisia
13 - Department of Biology, Laboratory of Applied Genetics in Agronomy, Ecology and Public health (GenApAgiE), Abou Bekr Belkaid University, Tlemcen,13000, Algeria
کلید واژه: association, gene, hairy, woolly,
چکیده مقاله :
In sheep, the woolly or hairy fleece type shows variation within and between breeds and populations. Re-cently, the woolly allele was shown to result from the insertion of an antisens retrogene into the 3’UTR of the ovine IRF2BP2 gene. The purpose of this study was to examine this InDel polymorphism within the IRF2BP2 gene using a specific PCR genotyping in 17 North African (Algeria and Tunisia) and Iranian sheep breeds showing various fleece types. The genotyping of the overall animals (n=908) showed the seg-regation of the two alleles insertion (I) and deletion (D), and the three genotypes (II, ID and DD) with vari-ous frequencies. Ouled Djellal, Rembi and Tâadmit known as woolly breeds had 100%, 94% and 94% of II homozygous animals, respectively. In contrast, Ifilène and Sidaou known as hairy breeds had 100% and 99% of DD homozygous animals. Other breeds showed the segregation of the I allele with a frequency from 3% to 91%. An association analysis, carried out only for the Algerian sheep breeds, revealed that this poly-morphism was significantly associated with the fleece type trait (P<0.05). Thus, the current work meets previous results to further confirm the genetic effect of the insertion occurring into the 3′ UTR of the IRF2BP2 gene on the fleece type trait of sheep breeds.
In sheep, the woolly or hairy fleece type shows variation within and between breeds and populations. Re-cently, the woolly allele was shown to result from the insertion of an antisens retrogene into the 3’UTR of the ovine IRF2BP2 gene. The purpose of this study was to examine this InDel polymorphism within the IRF2BP2 gene using a specific PCR genotyping in 17 North African (Algeria and Tunisia) and Iranian sheep breeds showing various fleece types. The genotyping of the overall animals (n=908) showed the seg-regation of the two alleles insertion (I) and deletion (D), and the three genotypes (II, ID and DD) with vari-ous frequencies. Ouled Djellal, Rembi and Tâadmit known as woolly breeds had 100%, 94% and 94% of II homozygous animals, respectively. In contrast, Ifilène and Sidaou known as hairy breeds had 100% and 99% of DD homozygous animals. Other breeds showed the segregation of the I allele with a frequency from 3% to 91%. An association analysis, carried out only for the Algerian sheep breeds, revealed that this poly-morphism was significantly associated with the fleece type trait (P<0.05). Thus, the current work meets previous results to further confirm the genetic effect of the insertion occurring into the 3′ UTR of the IRF2BP2 gene on the fleece type trait of sheep breeds.
Allain D. and Renieri C. (2010). Genetics of fiber production and fleece characteristics in small ruminants. Angora rabbit and South American camelids. Animal. 4(9), 1472-1481.
Ameur Ameur A., Ata N., Benyoucef M.T., Djaout A., Azzi N., Yilmaz O. and Gaouar S.B.S. (2018). New genetic identifica-tion and characterisation of 12 Algerian sheep breeds by mi-crosatellite markers. Italian J. Anim. Sci. 17(1), 38-48.
Ansari-Renani H.R. (2012). Fiber quality of Iranian carpet-wool sheep breeds. Media Peternakan. 35(3), 179-179.
Bai L., Zhou H., Gong H., Tao J., Ma Q., Ding W. and Hickford J.G. (2019). Variation in the ovine KAP8-1 gene affects wool fibre uniformity in Chinese Tan sheep. Small Rumin. Res. 178, 18-21.
Bedhiaf-Romdhani S., Djemali M., Zaklouta M. and Iniguez L. (2008). Monitoring crossbreeding trends in Aitken native Tu-nisian sheep breeds. Small Rumin. Res. 74(1), 274-278.
Belharfi F.Z., Djaout A., Ameur Ameur A., Sahraoui H. and Gaouar S.B.S. (2018). A comparative study of wool quality in sheep breeds in western Algeria. Gen. Biodiv. J. 2(1), 19-25.
Chalh A., El Gazzah M., Djemali M. and Chalbi N. (2007). Ge-netic and phenotypic characterization of the Tunisian Noire De Thibar lambs on their growth traits. J. Biol. Sci. 7, 1347-1353.
Chellig R. (1992). Les «Races» Ovines Algériennes. Office des Publications Universitaires, Alger.
Chessa B., Pereira F., Arnaud F., Amorim A., Goyache F., Mainland I., Kao R.R., Pemberton J.M., Beraldi D., Stear M.J., Alberti A., Pittau M., Iannuzzi L., Banabazi M.H., Kaz-wala R.R., Zhang Y.P., Arranz J.J., Ali. B.A., Wang Z. and Palmarini M. (2009). Revealing the history of sheep domesti-cation using retrovirus integrations. Science. 324(5926), 532-536.
Dale B.A., Lonsdale-Eccles J.D. and Holbrook K.A. (1980). Stra-tum corneum basic protein: an interfilamentous matrix protein of epidermal keratin. Curr. Probl. Dermatol. 10, 311-325.
Demars J., Cano M., Drouilhet L., Plisson-Petit F., Bardou P., Fabre S., Servin B., Sarry J., Woloszyn F., Mulsant P., Foulquier D., Carrière F., Aletru M., Rodde N., Cauet S., Bouchez O., Pirson M., Tosser-Klopp G. and Allain D. (2017). Genome-wide identification of the mutation underlying fleece variation and discriminating ancestral hairy species from mod-ern woolly sheep. Mol. Biol. Evol. 34(7), 1722-1729.
Dierks C., Lehner S., Philipp U. and Distl O. (2013). Elimination of keratin 71 as candidate for hairlessness in Don Sphynx cats. Anim. Genet. 44, 607-612.
Djaout A., Afri-Bouzebda F., Chekal F., El-Bouyahiaoui R., Rabhi A., Boubekeur A. and Gaouar S.B.S. (2017). Etat de la biodiversité des «races» ovines algériennes. Gen. Biodiv. J. 1(1), 1-17.
Djemali M. (2000). Genetic improvement objectives of sheep and goats in Tunisia. Lessons learned. Pp. 121-127 in Proc. 43rd Sémin. Méditerran., Zaragoza, Spain.
Djennadi S. (2006). Entrepreneurship among the Berber people in Algeria. Int. J. Entrepren. Small Bus. 3(6), 691-695.
Ebrahimi F., Gholizadeh M., Rahimi-Mianji G. and Farhadi A. (2017). Detection of QTL for greasy fleece weight in sheep using a 50 K single nucleotide polymorphism chip. Trop. Anim. Health Prod. 49(8), 1657-1662.
Excoffier L., Laval G. and Schneider S. (2005). Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinform. 1, 47-50.
Ghoreishifar S.M., Rochus C.M., Moghaddaszadeh-Ahrabi S., Davoudi P., Ardestani S.S., Zinovieva N.A. and Johansson A.M. (2021). Shared ancestry and signatures of recent selec-tion in goat and sheep. Genes. 12(3), 433-441.
Gong H., Zhou H., Forrest R.H., Li S., Wang J., Dyer J.M. and Hickford J.G. (2016). Wool keratin-associated protein genes in sheep-a review. Genes. 7(6), 24-32.
Guo Y., Bai F., Wang J., Fu S., Zhang Y., Liu X., Zhang Z., Shao J., Li R., Wang F., Zhang L., Zheng H., Wang X., Liu Y. and Jiang Y. (2023). Design and characterization of a high-resolution multiple-SNP capture array by target sequencing for sheep. J. Anim. Sci. 101, 33-41.
Gutierrez-Gil B., Esteban-Blanco C., Wiener P., Chitneedi P.K., Suarez-Vega A. and Arranz J.J. (2017). High-resolution analy-sis of selection sweeps identified between fine-wool Merino and coarse-wool Churra sheep breeds. Genet. Sel. 49(1), 1-24.
Harel S. and Christiano A.M. (2012). Keratin 71 mutations: from water dogs to woolly hair. J. Invest. Dermatol. 132, 2315-2317.
Harizi T. and Abidi F. (2015). Characteristics of virgin and pulled wool fibres used in Tunisian handmade carpets. Int. J. Sci. Technol. Res. 4(10), 368-372.
Harizi W., Chaki S., Bourse G. and Ourak M. (2015). Mechanical damage characterization of glass fiber-reinforced polymer laminates by ultrasonic maps. Composites B Eng. 70, 131-137.
Holman B.W.B. and Malau-Aduli A.E.O. (2012). A review of sheep wool quality traits. Annu. Res. Rev. Biol. 2(1), 1-14.
Iniguez L. (2006). Characterization of Small Breeds in West Asia and North Africa. International Center for Agriculture Re-search in the Dry Areas (ICARDA), West Asia. Aleppo, Syria.
Kalds P., Zhou S., Gao Y., Cai B., Huang S., Chen Y. and Wang X. (2022). Genetics of the phenotypic evolution in sheep: A molecular look at diversity-driving genes. Genet. Sel. 54(1), 1-27.
Kateb K. and Ouadah-Bedidi Z. (2001). L’actualitédémographique du Maghreb. Actes de la DESCO Université d’été, Montréal, Canada.
Kdidi S., Calvo J.H., González-Calvo L., Ben-Sassi M., Khorchani T. and Yahyaoui M.H. (2015). Genetic relationship and admixture in four Tunisian sheep breeds revealed by mi-crosatellite markers. Small Rumin. Res. 131, 64-69.
Khaldi G. (1989). Barbarine sheep. In: Small ruminant in the Near East, vol. III, North Africa FAO. Anim. Prod. Health. 74, 96-135.
Lahlou-Kassi A., Berger Y.M., Bradford G.E., Boukhliq G.R., Tibary A., Derqaoui L. and Boujenane I. (1989). Performance of D'Man and Sardi Sheep on Accelerated Lambing: Fertility, Litter Size, Postpartum Anoestrus and Puberty. Small Rumin. Res. 2(3), 225-239.
Li S., Chen W., Zheng X., Liu Z., Yang G., Hu X. and Mou C. (2020).Comparative investigation of coarse and fine wool sheep skin indicates the early regulators for skin and wool di-versity. Gene. 758, 1-9.
Li W., Gong H., Zhou H., Wang J., Li S., Liu X. and Hickford J.G. (2019). Variation in KRTAP6-1 affects wool fibre diame-ter in New Zealand Romney ewes. Arch. Anim. Breed. 62(2), 509-515.
Li S.W., Ouyang H.S., Rogers G.E. and Bawden C.S. (2009). Characterization of the structural and molecular defects in fi-bres and follicles of the Merino felting lustre mutant. Exp. Dermatol. 18, 134-142.
Li X., Yuan L., Zhang X., Zhang D., Zhao Y., Chen J. and Zhang X. (2022). Whole genome re-sequencing reveals artificial and natural selection for milk traits in East Friesian sheep. Front. Vet. Sci. 9, 1-10.
Lv F.H., Cao Y.H., Liu G.J., Luo L.Y., Lu R., Liu M.J. and Li M.H. (2022). Whole-genome resequencing of worldwide wild and domestic sheep elucidates genetic diversity, introgression, and agronomically important loci. Mol. Biol. Evol. 39(2), 353-359.
Ma G.W., Chu Y.K., Zhang W.J., Qin F.Y., Xu S.S., Yang H., Rong E.G, Du Z.Q., Wang S.Z., Li H. and Wang N. (2017). Polymorphisms of FST gene and their association with wool quality traits in Chinese Merino sheep. PLoS One. 12(4), e0174868.
Magneville D. (1959). Observation sur le mouton Algérien, ses qualités et ses défauts. Elevage et Cultures. 126, 12-17.
Marshall T.C., Slate J.B.K.E., Kruuk L.E.B. and Pemberton J.M. (1998). Statistical confidence for likelihood based paternity in-ference in natural populations. Mol. Ecol. 7(5), 639-655.
Miller S.A., Dykes D.D. and Polesky H.F. (1988). A simple salt-ing out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16(3), 1215-1221.
Naidoo P., Cloete S. and Olivier J. (2004). Heritability estimates and correlations between subjectively assessed and objectively measured fleece traits in Merino sheep. South African J. Anim. Sci. 34(6), 13-17.
ONAGRI. (2018). Annuaire de production animale. http://www.onagri.tn/statistiques. Accessed Jun. 2021.
Powell B.C. and Rogers G.E. (1997). The role of keratin proteins and their genes in the growth, structure and properties of hair. Pp. 59-148 in Formation and Structure of Human Hair. P. Jolles, H. Zahn and E. Hocker, Eds., Birkhauser Verlag, Basel.
Purvis I.W. and Franklin I.R. (2005). Major genes and QTL influ-encing wool production and quality: A review. Genet. Sel. 37(1), 1-11.
Raymond M. and Rousset F. (1995). GENEPOP (version 4): Population genetics software for exact tests and ecumenicism. J. Hered. 86(3), 248-249.
Safari E., Fogarty N.M. and Gilmour A.R. (2005). A review of genetic parameter estimates for wool, growth, meat and repro-duction traits in sheep. Livest. Prod. Sci. 92(3), 271-289.
Safari E., Fogarty N.M., Gilmour A.R., Atkins K.D., Mortimer S.I., Swan A.A. and Van der Werf J.H.J. (2007). Across popu-lation genetic parameters for wool, growth, and reproduction traits in Australian Merino sheep. 2. Estimates of heritability and variance components. Australian J. Agric. Res. 58(2), 177-184.
Shi X., Wu J., Lang X., Wang C., Bai Y., Riley D.G. and Ma X. (2021). Comparative transcriptome and histological analyses provide insights into the skin pigmentation in Minxian black fur sheep (Ovisaries). Peer J. 9, e11122.
Shimomura Y., Wajid M., Petukhova L., Kurban M. and Chris-tiano A.M. (2010). Autosomal-dominant woolly hair resulting from disruption of keratin 74 (KRT74), a potential determi-nant of human hair texture. Am. J. Hum. Genet. 86, 632-638.
Snyman M.A., Olivier W.J. and Olivier J.J. (1996). Variance components and genetic parameters for body weight and fleece traits of Merino sheep in an arid environment. South Af-rican J. Anim. Sci. 26(1), 11-14.
Talebi R., Ahmadi A., Afraz F., Sarry J., Woloszyn F. and Fabre S. (2018). Detection of single nucleotide polymorphisms at major prolificacy genes in the Mehraban sheep and association with litter size. Ann. Anim. Sci. 18(3), 685-698.
Trouette M. (1929). Les «races» d’Algérie. Pp. 299-302 in Proc. Congr. Mouton, Paris, France.
Wuliji T., Dodds K.G., Land J.T.J., Andrews R.N. and Turner P.R. (2001). Selection for ultrafine Merino sheep in New Zea-land: heritability, phenotypic and genetic correlations of live weight, fleece weight and wool characteristics in year-lings. Anim. Sci. 72(2), 241-250.
Yu Z., Gordan S.W., Nixon A.J., Bawden C.S., Rogers M.A., Wildermoth J.E. and Pearson A.J. (2009). Expression patterns of keratin intermediate filament and keratin associated protein genes in wool follicles. Differentiation. 77(3), 307-316.
Zeder M.A. (2008). Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact. Proc. Natl. Acad. Sci. USA. 105(33), 11597-11604.
Zhang L., Sun F., Jin H., Dalrymple B.P., Cao Y., Wei T., Vuo-colo T., Zhang M., Piao Q. and Ingham A.B. (2017). Compari-son of transcriptomic patterns measured in the skin of Chinese fine and coarse wool sheep breeds. Sci. Rep. 7(1), 14301-14311.
Zhao H., Guo T., Lu Z., Liu J., Zhu S., Quia G., Han M., Yuan C., Wang T., Li F., Zhang Y., Hou F., Yue Y. and Yang B. (2021). Genome-wide association studies detects candidate genes for wool traits by re-sequencing in Chinese fine-wool sheep. BMC Genom. 22, 127-135.