The Effect of Feeding Top-Dress Cottonseed Bioactive Peptide and Organic Selenium on Milk Production, Liver Function, Metabolic, and Immunity Responses during the Prepartum of Holstein Dairy Cattle
محورهای موضوعی : CamelZ. Mirbagheri Marvili 1 , H. Amanlou 2 , N. Eslamian Farsuni 3
1 - Department of Animal Science, College of Agriculture, University of Zanjan, Zanjan, Iran
2 - Department of Animal Science, College of Agriculture, University of Zanjan, Zanjan, Iran
3 - Department of Animal Science, Chahar Mahal and Bakhtiari Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shahrekord, Iran
کلید واژه: cottonseed protein hydrolysate, cow, hydroxy selenomethionine, transition period,
چکیده مقاله :
The objective of this study was to assess the effect of feeding top-dress bioactive peptides from cottonseed (CSBP) and hydroxy seleno methionine (HSM) on the performance, immune system, and health status of Holstein cows during the prepartum period. One hundred and eighty multiparous Holstein dry cows from 21 d before the expected calving date were assigned to one of the four experimental treatments of a random-ized complete block design in a 2 × 2 factorial arrangement including 1) control group (containing inor-ganic Se recommended in NRC (2001)), 2) control plus 1.2 mg HSM, 3) control plus 300 g CSBP and 4) control plus 1.2 mg HSM and 300 g CSBP. The interaction of HSM and CSBP affected prepartum serum glucose concentration. Prepartum immune indicators and liver enzymes were not affected by the interaction of CSBP by HSM. In the postpartum period, the interaction of HSM by CSBP affected the concentration of serum glucose, cholesterol, total protein (TP), and creatine kinase (CK). Alkaline phosphatase (ALP) tended to be significant by the interaction of HSM and CSBP. The interaction of CSBP with HSM in-creased milk production. The interaction of CSBP by HSM showed that the Pe0Se1 cows had the lowest milk BHB concentration compared to other treatments. These results demonstrate that feeding top-dress CSBP and HSM could improve milk yield. Increasing total antioxidant capacity (TAC) by HSM and pep-tide separately could be helpful as a tool to pass the inflammatory period peripartum. The liver functionality index wasn’t affected by any of the experimental treatments.
The objective of this study was to assess the effect of feeding top-dress bioactive peptides from cottonseed (CSBP) and hydroxy seleno methionine (HSM) on the performance, immune system, and health status of Holstein cows during the prepartum period. One hundred and eighty multiparous Holstein dry cows from 21 d before the expected calving date were assigned to one of the four experimental treatments of a random-ized complete block design in a 2 × 2 factorial arrangement including 1) control group (containing inor-ganic Se recommended in NRC (2001)), 2) control plus 1.2 mg HSM, 3) control plus 300 g CSBP and 4) control plus 1.2 mg HSM and 300 g CSBP. The interaction of HSM and CSBP affected prepartum serum glucose concentration. Prepartum immune indicators and liver enzymes were not affected by the interaction of CSBP by HSM. In the postpartum period, the interaction of HSM by CSBP affected the concentration of serum glucose, cholesterol, total protein (TP), and creatine kinase (CK). Alkaline phosphatase (ALP) tended to be significant by the interaction of HSM and CSBP. The interaction of CSBP with HSM in-creased milk production. The interaction of CSBP by HSM showed that the Pe0Se1 cows had the lowest milk BHB concentration compared to other treatments. These results demonstrate that feeding top-dress CSBP and HSM could improve milk yield. Increasing total antioxidant capacity (TAC) by HSM and pep-tide separately could be helpful as a tool to pass the inflammatory period peripartum. The liver functionality index wasn’t affected by any of the experimental treatments.
Alhidary I.A., Shini S., Al Jassim R.A., Abudabos A.M. and Gaughan J.B. (2015). Effects of selenium and vitamin E on performance, physiological response, and selenium balance in heat-stressed sheep. J. Anim. Sci. 93, 576-588.
Antunes-Fernandes E.C., van Gastelen S., Dijkstra J., Hettinga K.A. and Vervoort J. (2016). Milk metabolome relates enteric methane emission to milk synthesis and energy metabolism pathways. J. Dairy Sci. 99, 6251-6262.
Aslam S., Shukat R., Khan M.I., and Shahid M. (2020). Effect of dietary supplementation of bioactive peptides on antioxidant potential of broiler breast meat and physicochemical charac-teristics of nuggets. Food Sci. Anim. Resour. 40(1), 55-73.
Avery J. and Hoffmann P. (2018). Selenium, selenoproteins, and immunity. Nutrients. 10(9), 1203-1210.
Barham D. and Trinder P. (1972). An improved color reagent for the determination of blood glucose by the oxidase system. Analyst. 97, 142-147.
Baumgard L., Collier R.J. and Bauman D. (2017). A 100-year review: Regulation of nutrient partitioning to support lactation. J. Dairy Sci. 100, 10353-10366.
Beers M.H. and Berkow R. (1998). The Merck Manual of Diagno-sis and Therapy. Merck Research Laboratories, Whitehouse Station, USA.
Bell A.W. (1995). Regulation of organic nutrient metabolism dur-ing transition from late pregnancy to early lactation. J. Anim. Sci. 73, 2804-2819.
Bellinger F.P., Raman A.V., Reeves M.A. and Berry M.J. (2009). Regulation and function of selenoproteins in human disease. Biochem. J. 422(1), 11-22.
Bellows C.G., Aubin J.E. and Heersche J.N. (1991). Initiation and progression of mineralization of bone nodules formed in vitro: The role of alkaline phosphatase and organic phosphate. Bone Miner. 14, 27-40.
Bertoni G. and Trevisi E. (2013). Use of the liver activity index and other metabolic variables in the assessment of metabolic health in dairy herds. Vet. Clin. North Am. Food Anim. Pract. 29, 413-431.
Bertoni G., Trevisi E., Han X. and Bionaz M. (2008). Effects of inflammatory conditions on liver activity in puerperium period and consequences for performance in dairy cows. J. Dairy Sci. 91(9), 3300-3310.
Boyd J.W. (1984). A review: The interpretation of serum bio-chemistry test results in domestic animals. Vet. Clin. Pathol. 13(2), 7-14.
Bradford B.J., Yuan K., Farney J.K., Mamedova L.K. and Carpenter A.J. (2015). Invited review: Inflammation during the transi-tion to lactation: new adventures with an old flame. J. Dairy Sci. 98, 6631-6650.
Burk R.F. and Hill K.E. (2015). Regulation of selenium metabo-lism and transport. Annu. Rev. Nutr. 35(1), 109-134.
Calamari L., Petrera F. and Bertin G. (2010). Effects of either sodium selenite or Se yeast (Sc CNCM I-3060) supplementa-tion on selenium status and milk characteristics in dairy cows. Livest. Sci. 128, 154-165.
Cao J., Guo F., Zhang L., Dong B. and Gong L. (2014). Effects of dietary selenomethionine supplementation on growth perform-ance, antioxidant status, plasma selenium concentration, and immune function in weaning pigs. J. Anim. Sci. Biotechnol. 5, 46-52.
Ceballos-Marques A., Barkema H.W., Stryhn H., Dohoo I.R., Keefe G.P. and Wichtel J.J. (2012), Bulk tank milk selenium and its association with milk production parameters in Cana-dian dairy herds. Canadian Vet. J. 53(1), 51-56.
Che L., Xu M., Gao K., Wang L., Yang X., Wen X., Xiao H., Li M. and Jiang Z. (2021). Mammary tissue proteomics in a pig model indicates that dietary valine supplementation increases milk fat content via increased de novo synthesis of fatty acid. Food Sci Nutr. 9, 6213-6223.
Chen H., Qiu Q., Dou L. and Liang J. (2015). Regulation of he-patic carbohydrate metabolism by Selenium during diabetes. Chem. Biol. Interact. 232, 1-6.
Dalgaard T.S., Briens M., Engberg R.M. and Lauridsen C. (2018). The influence of selenium and selenoproteins on immune re-sponses of poultry and pigs. Anim. Feed Sci. Technol. 238, 73-83.
Danfær A., Tetens V. and Agergaard N. (1995). Review and an experimental study on the physiological and quantitative as-pects of gluconeogenesis in lactating ruminants. Comp. Bio-chem. Physiol. B Biochem. Mol. Biol. 111, 201-210.
Dolatkhah B., Ghorbani G.R., Alikhani M., Hashemzadeh F., Mahdavi A.H., Sadeghi-Sefidmazgi A. and Rezamand P. (2020). Effects of hydrolyzed cottonseed protein supplementa-tion on performance, blood metabolites, gastrointestinal de-velopment, and intestinal microbial colonization in neonatal calves. J. Dairy Sci. 103(6), 5102-5117.
Drackley J.K. (1999). Biology of dairy cows during the transition period: the final frontier. ADSA Foundation Scholar Award. J Dairy Sci. 82(11), 2259-2273.
Ferreira R.L.U., de Sousa A.W.F., Oliveira A.G., de Rezende A.A., Cobucci R.N. and Pedrosa L.F.C. (2022). Effects of se-lenium supplementation on glycemic control markers in healthy rodents: A systematic review protocol. PLoS One. 17(4), e0261985.
Ferreira G.M. and Petzer I.M. (2019). Injectable organic and inor-ganic selenium in dairy cows: Effects on milk, blood, and so-matic cell count levels. Onderstepoort J. Vet. Res. 86, 1-8.
Filho J.G., Rodrigues J.M., Valadares A.C.F., Almeida A.B., Fer-nandes K.F., Lemes A.C. and Alves C.C.F. (2020). Bioactive properties of protein hydrolysate of cottonseed byproduct: An-tioxidant, antimicrobial, and angiotensin-converting enzyme (ACE) inhibitory activities. Waste Biomass Valoriz. 12, 1395-1404.
Finley J., Kong A., Hintze K., Jeffery E., Ji L. and Lei X. (2011). Antioxidants in foods: state of the science important to the food industry. J. Agric. Food Chem. 59, 6837-6846.
Gao D., Zhang F., Ma Z., Chen S. and Feng R. (2019). Isolation and identification of the angiotensin-I converting enzyme (ACE) inhibitory peptides derived from cottonseed protein: Optimization of hydrolysis conditions. Int. J. Food Prop. 22, 1296-1309.
Gao D., Cao Y. and Li H. (2010). Antioxidant activity of peptide fractions derived from cottonseed protein hydrolysate. J. Sci. Food Agric. 90, 1855-1860.
Gaur T., Lengner C.J., Hovhannisyan H., Bhat R.A., Bodine P.V.N., Komm B.S., Javed A., van Wijnen A.J., Stein J.L., Stein G.S. and Lian J.B. (2005). Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene ex-pression. J. Biol. Chem. 280, 33132-33140.
Gaur T., Rich L., Lengner C.J., Hussain S., Trevant B., Ayers D., Stein J.L., Bodine P.V.N., Komm B.S., Stein G.S. and Lian J.B. (2006). Secreted frizzled related protein 1 regulates Wnt signaling for BMP2 induced chondrocyte differentiation. J. Cell Physiol. 208, 87-96.
Goff J.P. and Horst R.L. (1997). Physiological changes at parturi-tion and their relationship to metabolic disorders. J. Dairy Sci. 80, 1260-1268.
Gong J., Ni L., Wang D., Shi B. and Yan S. (2014). Effect of die-tary organic selenium on milk selenium concentration and an-tioxidant and immune status in mid-lactation dairy cows. Livest. Sci. 170, 84-90.
Hachemi M.A., Sexton J.R., Briens M. and Whitehouse N.L. (2023). Efficacy of feeding hydroxy-selenomethionine on plasma and milk selenium in mid-lactation dairy cows. J. Dairy Sci. 106, 2374-2385.
Hall J., Bobe G., Nixon B., Vorachek W., Nichols T., Mosher W. and Pirelli G. (2014). Effect of transport on blood selenium and glutathione status in feeder lambs. J. Anim. Sci. 92, 4115- 4122.
Hidiroglou M., Heaney D.P. and Jenkins K.J. (1968). Metabolism of inorganic selenium in rumen bacteria. Canadian J. Physiol. Pharmacol. 46, 229-232.
Hori G., Wang M.F., Chan Y.C., Komatatsu T., Wong Y., Chen T.H., Yamamoto K., Nagaroka S. and Yamamoto S. (2001). Soy protein hydrolysate with bound phospholipids reduces se-rum cholesterol levels in hypercholesterolemic adult male vol-unteers. Biosci. Biotechnol. Biochem. 65(1), 72-78.
Horst R.L., Goff J.P., Reinhardt T.A. and Buxton D.R. (1997). Strategies for preventing milk fever in dairy cattle. J. Dairy Sci. 80, 1269-1280.
Hosnedlova B., Kepinska M., Skalickova S., Fernandez C., Ruttkay-Nedecky B., Malevu T.D., Sochor J., Baron M., Mel-cova M., Zidkova J. and Kizek R. (2017). A summary of new findings on the biological effects of selenium in selected ani-mal species-a critical review. Int. J. Mol. Sci. 18(10), 2209-2210.
Hou Y., Wu Z.H., Dai Z.H., Wang G. and Wu G. (2017). Protein hydrolysates in animal nutrition: industrial production, bioac-tive peptides, and functional significance. J. Anim. Sci. Bio-technol. 8, 24-35.
Huang H., Jiao X., Xu Y., Han Q., Jiao W., Liu Y., Li S. and Teng X. (2019). Dietary selenium supplementation alleviates im-mune toxicity in the hearts of chickens with lead-added drink-ing water. Avian Pathol. 48(3), 230-237.
Jlali M., Briens M., Rouffineau F., Geraert P.A. and Mercier Y. (2014). Evaluation of the efficacy of 2-hydroxy-4-methylselenobutanoic acid on growth performance and tissue selenium retention in growing pigs. J. Anim. Sci. 92, 182-188.
Juniper D.T., Phipps R.H., Jones A.K. and Bertin G. (2006). Sele-nium supplementation of lactating dairy cows: Effect on sele-nium concentration in blood, milk, urine, and feces. J. Dairy Sci. 89, 3544-355.
Juniper D.T., Rymer C. and Briens M. (2019). Bioefficacy of hydroxy-selenomethionine as a selenium supplement in preg-nant dairy heifers and on the selenium status of their calves. J. Dairy Sci. 102, 7000-7010.
Karimzadeh S., Rezaei M. and Teimouri Yansari A. (2017). Ef-fects of different levels of canola meal peptides on growth per-formance and blood metabolites in broiler chickens. Livest. Sci. 203, 37-40.
Khalili M., Chamani M., Amanlou H., Nikkhah A. and Sadeghi A.A. (2019). Effects of different sources of selenium supple-mentation on antioxidant indices, biochemical parameters, thy-roid hormones and Se status in transition cows. Acta Scientia-rum. Anim. Sci. 41, 1-10.
Kida K. (2002). Use of every ten-day criteria for metabolic profile test after calving and dry off in dairy herds. J. Vet. Med. Sci. 64, 1003-1010.
Kiełczykowska M., Kocot J., Paździor M. and Musik I. (2018). Selenium—a fascinating antioxidant of protective properties. Adv. Clin. Exp. Med. 27, 245-255.
Kommisrud E., Østerå O. and Vatn T. (2005). Blood selenium associated with health and fertility in Norwegian dairy herds. Acta Vet. Scand. 46, 229-240.
Kumar M., Tomar M., Punia S., Grasso S., Arrutia F., Choudhary J. and Singh S. (2021). Cottonseed: A sustainable contributor to global protein requirements. Trends Food Sci. Technol. 111, 100-113.
Kumar R., Hegde A.S., Sharma K., Parmar P. and Srivatsan V. (2022). Microalgae as a sustainable source of edible proteins and bioactive peptides–Current trends and future prospects. Food Res. Int. 157, 1-9.
Kyungae J., Ki-Bae H. and Hyung J.S. (2020). Effects of the whey protein hydrolysates of various protein enzymes on the prolif-eration and differentiation of 3T3-E1 osteoblasts. Prev. Nutr. Food Sci. 25(1), 71-77.
Labunskyy V.M., Hatfield D.L. and Gladyshev V.N. (2014). Se-lenoproteins: Molecular pathways and physiological roles. Physiol. Rev. 94, 739-777.
Landy N., Kheiri F. and Faghani M. (2021). Effects of periodical application of bioactive peptides derived from cottonseed on performance, immunity, total antioxidant activity of serum and intestinal development of broilers. Anim. Nutr. 7, 134-141.
Landy N., Kheiri F. and Faghani M. (2020). Evaluation of cotton-seed bioactive peptides on growth performance, carcase traits, immunity, total antioxidant activity of serum and intestinal morphology in broiler chickens. Italian J. Anim. Sci. 19, 1375-1386.
Lei X. and Vatamaniuk M. (2011). Two tales of antioxidant en-zymes on β cells and diabetes. Antioxid. Redox Signal. 14, 489-503.
Li Y., Liu J.X., Xiong J.L., Wang Y.M., Zhang W.X. and Wang D.M. (2019). Effect of hydroxy selenomethionine on lactation performance, blood profiles, and transfer efficiency in early-lactating dairy cows. J. Dairy Sci. 102, 6167-6173.
Lippman S., Klein E., Goodman P., Lucia M., Thompson I., Ford L., Minasian L.M., Gaziano J.M., Hartline J.A., Parsons J.K., Bearden J.D., Crawford E.D., Goodman G.E., Claudio J., Winquist E., Cook E.D., Karp D.D., Walther P., Lieber M.M., Kristal A.R., Darke A.K., Arnold K.B., Ganz P.A., Santella R.M., Albanes D., Taylor P.R., Probstfield J.L., Jagpal T.J., Crowley J.J., Meyskens F.L., Baker L.H. and Coltman C.A. (2009). Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and vitamin e cancer prevention trial (SELECT). JAMA. 301, 39-51.
Liu E., Xiao W., Pu Q., Xu L., Wang L., Mao K., Hong W., Qu M. and Xue F. (2022a). Microbial and metabolomic insights into the bovine lipometabolic responses of rumen and mam-mary gland to zymolytic small peptide supplementation. Front. Vet. Sci. 9, 1-8.
Liu J., Luo Y., Zhang X., Gao Y. and Zhang W. (2022b). Effects of bioactive peptides derived from cottonseed meal solid-state fermentation on the growth, metabolism, and immunity of yel-low-feathered broilers. Anim. Sci. J. 93(1), 1-11.
Liu J.C., Sun H., Nie C.X., Ge W.X., Wang Y.Q. and Zhang W.J. (2018). Oligopeptide derived from solid-state fermented cot-tonseed meal significantly affect the immunomodulatory in BALB/c mice treated with cyclophosphamide. Food Sci. Bio-technol. 27, 1791-1799.
Machado V.S., Bicalho M.L., Perreira R.V., Caixeta L.S., Knauer W.A., Oikonomou G., Gilbert R.O. and Bicalho R.C. (2013), Effect of an injectable trace mineral supplement containing se-lenium, copper, zinc and manganese on the health and produc-tion of lactating Holstein cows. Vet. J. 197(2), 451-456.
Mallard B.A., Dekkers J.C. and Ireland M.J. (1998). Alteration in immune responsiveness during the peripartum period and its ramification on dairy cow and calf health. J. Dairy Sci. 81(2), 585-595.
Marciel M.P. and Hoffmann P.R. (2019). Molecular mechanisms by which Selenoprotein K regulates immunity and Cancer. Biol. Trace Elem. Res. 192(1), 60-68.
Meagher E.A. and Fitzgerald G.A. (2000). Indices of lipid peroxi-dation in vivo: strengths and limitation. Free Radic. Biol. Med. 28(12), 1745-1750.
Mehdi Y. and Dufrasne I. (2016). Selenium in cattle: A review. Molecules. 21, 545-555.
Mihalikova K., Gresakova L., Boldižarova K., Faix S., Leng L. and Kisidayova S. (2005). The effects of organic selenium supplementation on the rumen ciliate population in sheep. Folia Microbiol. 50, 353-356.
Miller N.J., Rice-Evans C. and Davies M.J. (1993a). Factors in-fluencing the antioxidant activity determined by the ABTS0 + radical cation assay. Clin. Sci. 84, 407-412.
Miller R., Paape M., Fulton L. and Schutz M.M. (1993b). The relationship of milk somatic cell count to milk yields for Hol-stein heifers after first calving. J. Dairy Sci. 76(3), 728-733.
Minor D.J., Trower S.L., Strang B.D., Shaver R.D. and Grummer R.R. (1998). Effects of nonfiber carbohydrate and niacin on periparturient metabolic status and lactation of dairy cows. J. Dairy Sci. 81, 189-200.
Miranda S.G., Purdie N.G., Osborne V.R., Coomber B.L. and Cant J.P. (2011). Selenomethionine increases proliferation and reduces apoptosis in bovine mammary epithelial cells under oxidative stress. J. Dairy Sci. 94, 165-173.
Moradian R., Najdegerami E.H., Nikoo M. and Nejati V. (2022). Ameliorating Effects of Bioactive Peptides Extracted from Li-topenaeus vannamei Wastes on Oxidative Stress, Glucose Regulation, and Autophagy Gene Expression in Nonalcoholic Fatty Liver-Induced Rats. Evid. Based Complement. Alternat. Med. 2022, 1-12.
Mueller A., Mueller K., Wolf N. and Pallauf J. (2009). Selenium and diabetes: an enigma? Free Radic. Res. 43, 1029-1059.
Mundy G.R. and Guise T.A. (1999). Hormonal control of calcium homeostasis. Clin. Chem. 45, 1347-1352.
Nathalie L.F., Delphine M. and Christiane O. (2004). Modifica-tions of protein and amino acid metabolism during inflamma-tion and immune system activation. Live. Prod. Sci. 87, 37-45.
NRC. (1989). Nutrient Requirements of Dairy Cattle. 6th Ed. Na-tional Academy Press, Washington, DC., USA.
NRC. (2001). Nutrient Requirements of Dairy Cattle. 7th Ed. Na-tional Academy Press, Washington, DC., USA.
NRC. (2021). Nutrient Requirements of Dairy Cattle. 8th Ed. Na-tional Academy Press, Washington, DC., USA.
Oztu Z., Gurpinar T., Vural K., Boyacıoglu S., Korkmaz M. and Var A. (2015). Effects of selenium on endothelial dysfunction and metabolic profile in low dose streptozotocin induced dia-betic rats fed a high fat diet. Biotech. Histochem. 90, 506-515.
Paglia D.E. and Valentine W.N. (1967). Studies on the quantita-tive and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70, 158-168.
Phipps R.H., Grandison A.S., Jones A.K., Juniper D.T., Ramos-Morales E. and Bertin G. (2008). Selenium supplementation of lactating dairy cows: effects on milk production and total sele-nium content and speciation in blood, milk and cheese. Ani-mal. 2(11), 1610-1618.
Pilarczyk B., Jankowiak D., Tomza-Marciniak A., Pilarczyk R., Sablik P., Drozd R., Tylkowska A. and Skólmowska M. (2012). Selenium concentration and glutathione peroxidase (GSH-Px) activity in serum of cows at different stages of lac-tation. Biol. Trace Elem. Res. 147, 91-96.
Putnam D.E. and Varga G.A. (1998). Protein density and its influ-ence on metabolite concentration and nitrogen retention by Holstein cows in late gestation. J. Dairy Sci. 81, 1608-1618.
Rayman M.P. and Stranges S. (2013). Epidemiology of selenium and type 2 diabetes: can we make sense of its. Free Radic. Biol. Med. 65, 1557-1564.
Reczyńska D., Witek B., Jarczak J., Czopowicz M., Mickiewicz M., Kaba J., Zwierzchowski L. and Bagnicka E. (2019). The impact of organic vs. inorganic selenium on dairy goat produc-tivity and expression of selected genes in milk somatic cells. J. Dairy Res. 86, 48-54.
Rutigliano H.M., Lima F.S., Cerri R.L.A., Greco L.F., Vilela J.M., Magalhães V., Silvestre F.T., Thatcher W.W and Santos J.E.P. (2008). Effects of method of presynchronization and source of selenium on uterine health and reproduction in dairy cows. J. Dairy Sci. 91(9), 3323-3336.
Sabbia J., Kalscheur K., Garcia A., Gehman A.M. and Tricarico J.M. (2012). Soybean meal substitution with a yeast-derived microbial protein source in dairy cow diets. J. Dairy Sci. 95, 5888-5900.
Salavati M.E., Rezaeipour V., Abdullahpour R. and Mousavi S.N. (2021). Bioactive peptides from sesame meal for broiler chickens: Its influence on the serum biochemical metabolites, immunity responses and nutrient digestibility. Int. J. Pept. Res. Ther. 27, 1297-1303.
SAS Institute. (2013). SAS®/STAT Software, Release 9.4. SAS Institute, Inc., Cary, NC. USA.
Schabenberger O.S., Gregoire T.G. and Kong F. (2000). Collec-tions of simple effects and their relationship to main effects and interactions in factorials. Am. Stat. 54, 210-214.
Seal C.J. and Reynolds C.K. (1993). Nutritional implication of gastrointestinal and liver metabolism in ruminants. Nutr. Res. Rev. 6, 185-208.
Slavik P., Illek J., Brix M., Hlavicova J., Rajmon R. and Jilek F. (2008). Influence of organic versus inorganic dietary selenium supplementation on the concentration of selenium in colos-trum, milk and blood of beef cows. Acta Vet. Scand. 50(1), 43-53.
Sordillo L.M. and Aitken S.L. (2009). Impact of oxidative stress on the health and immune function of dairy cattle. Vet. Immu-nol. Immunopathol. 128, 104-109.
Spears J.W. and Weiss W.P. (2008). Role of antioxidants and trace elements in health and immunity of transition dairy cows. Vet. J. 176(1), 70-76.
Stein W. (1998). Creatine kinase (total activity), creatine kinase isoenzymes and variants. Pp. 71-79 in Clinical Laboratory Di-agnostics. L. Thomas, Ed., TH-Books Verlagsgesellschaft, Frankfurt, Germany.
Steinbrenner H., Speckmann B., Pinto A. and Sies H. (2011). High selenium intake and increased diabetes risk: experimen-tal evidence for interplay between selenium and carbohydrate metabolism. J. Clin. Biochem. Nutr. 48, 40-45.
Stranges S., Marshall J.R., Natarajan R., Donahue R.P., Trevisan M., Combs G.F., Cappuccio F.P., Ceriello A. and Reid M.E. (2007). Effects of long-term selenium supplementation on the incidence of type 2 diabetes: A randomized trial. Ann. Intern. Med. 147, 217-223.
Sun H., Yao X., Wang X., Wu Y., Liu Y., Tang J. and Feng J. (2015). Chemical composition and in vitro antioxidant prop-erty of peptides produced from cottonseed meal by solid-state fermentation. CYTA J. Food. 13, 264-272.
Sun L.L., Gao S.T., Wang K., Xu J.C., Sanz-Fernandez M.V., Baumgard L.H. and Bu D.P. (2019). Effects of source on bioavailability of selenium, antioxidant status, and perform-ance in lactating dairy cows during oxidative stress-inducing conditions. J. Dairy Sci. 102, 311-319.
Sun P., Wang J., Liu W., Bu D.P., Liu S.J. and Zhang K.Z. (2017). Hydroxy-selenomethionine: A novel organic selenium source that improves antioxidant status and selenium concentrations in milk and plasma of mid-lactation dairy cows. J. Dairy Sci. 100, 9602-9610.
Sunde R.A. (2021). Gene set enrichment analysis of selenium-deficient and high selenium rat liver transcript expression and comparison with turkey liver expression. J. Nutr. 151(4), 772-784.
Surai P. (2006). Selenium in Nutrition and Health. Nottingham University Press. Nottingham, United Kingdom.
Thomas L. (1998). Clinical Laboratory Diagnostics. TH-Books Verlagsgesellschaft, Frankfurt, Germany.
Trevisi E., Amadori M., Cogrossi S., Razzuoli E. and Bertoni G. (2012). Metabolic stress and inflammatory response in high-yielding, periparturient dairy cows. Res. Vet. Sci. 93(2), 695-704.
Urrutia N. and Harvatine K.J. (2017). Effect of conjugated linoleic acid and acetate on milk fat synthesis and adipose lipogenesis in lactating dairy cows. J. Dairy Sci. 100, 5792-5804.
Vandehaar M.J., Yousif G., Sharma B.K., Herdt T.H., Emery R.S., Allen M.S. and Liesman J.S. (1999). Effect of energy and pro-tein density of prepartum diets on fat and protein metabolism of dairy cattle in the peripartum period. J. Dairy Sci. 82, 1282-1295.
Wang C., Yang S., Zhang N., Mu Y., Ren H., Wang Y. and Li K. (2014). Long-term supranutritional supplementation with sele-nate decreases hyperglycemia and promotes fatty liver degen-eration by inducing hyper-insulinemia in diabetic db/db mice. PLoS One. 9(7), e101315.
Wang D., Jia D., He R., Lian S., Wang J. and Wu R. (2021a). Association between serum selenium level and subclinical mastitis in dairy cattle. Biol. Trace Elem. Res. 199, 1389-1396.
Wang L., Ma M., Yu Z. and Du S.K. (2021b). Preparation and identification of antioxidant peptides from cottonseed proteins. Food Chem. 352, 1-9.
Weiss W.P. (2005). Selenium sources for dairy cattle. Pp. 61-71 in Proc. 3rd State Dairy Nutr. Conf., Fort Wayne, USA.
Wolffram S., Berger B., Grenacher B. and Scharrer E. (1989). Transport of seleno amino acids and their sulfur analogues across the intestinal brush border membrane of pigs. J. Nutr. 119(5), 706-712.
Yasumoto K., Iwami K. and Yoshida M. (1979). Vitamin B6 de-pendence of selenomethionine and selenite utilization for glu-tathione peroxidase in the rat. J. Nutr. 109, 760-766.
Yong L., Zhang W., Zhou H., Zhu J. and Pan C. (2022). Effects of hydroxy selenomethionine with symmetrical and chelated chemical structure on lactation performances, anti-oxidative status and immunities, selenium transfer efficiencies for early-lactating dairy cows. Symmetry. 14, 916-925.
Yue S., Li X., Qian J., Du J., Liu X., Xu H., Liu H. and Chen X. (2023). Impact of enzymatic hydrolyzed protein feeding on rumen microbial population, blood metabolites and perform-ance parameters of lactating dairy cows. Pakistan Vet. J. 43(4), 804-808.
Zhang Y., Zhang H., Wang L., Guo X., Qi X. and Qian H. (2011). Influence of the degree of hydrolysis (DH) on antioxidant properties and radical-scavenging activities of peanut peptides prepared from fermented peanut meal. European Food Res. Technol. 232, 941-950.
Zhao L., Du M., Gao J., Zhan B. and Mao X. (2019). Label-free quantitative proteomic analysis of milk fat globule membrane proteins of yak and cow and identification of proteins associ-ated with glucose and lipid metabolism. Food Chem. 275, 59-68.
Zheng Y., He T., Xie T., Wang J., Yang Z., Sun X., Wang W. and Li S. (2022). Hydroxy-selenomethionine supplementation promotes the in vitro rumen fermentation of dairy cows by al-tering the relative abundance of rumen microorganisms. J. Appl. Microbiol. 132, 1-9.
Zhong F., Liu J., Ma J. and Shoemaker C.F. (2007). Preparation of hypocholesterol peptides from soy protein and their hypocho-lesterolmic effect in mice. Food Res. Int. 40, 661-667.
Zhou J. and Huang K L.X. (2013). Selenium and diabetes evi-dence from animal studies. Free Radic. Biol. Med. 65, 1548-1556.
Zhou J., Ding Z., Pu Q., Xue B., Yue S., Guan S., Wang Z., Wang L., Peng Q. and Xue B. (2022). Rumen fermentation and mi-crobiome responses to enzymatic hydrolysate of cottonseed protein supplementation in continuous in vitro culture. Ani-mals. 12, 2113-2121.
Zhou Z., Loor J.J., Piccioli-Cappelli F., Librandi F., Lobley G.E. and Trevisi E. (2016). Circulating amino acids in blood plasma during the peripartal period in dairy cows with differ-ent liver functionality index. J. Dairy Sci. 99, 2257-2267.
Zhuang C., Gao J., Liu G., Zhou M., Yang J., Wang D., Kastelic J.P. and Han B. (2021). Selenomethionine activates selenopro-tein S, suppresses Fas/FasL and the mitochondrial pathway, and reduces Escherichia coli-induced apoptosis of bovine mammary epithelial cells. J. Dairy Sci. 104, 10171-10182.