Recent Advances in the Development of Quantum Materials for the Construction of Solar Cells: A Mini Review
محورهای موضوعی : Journal of Environmental Friendly MaterialsO. Ashkani 1 , B. Abedi-Ravan 2 , Y. Yarahmadi 3
1 - Department of Materials Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 - Faculty of Basic sciences, Sattari University of aeronautical sciences, Tehran, Iran
3 - Faculty of Engineering, Mechanical Engineering, Kerman University, Kerman, Iran.
کلید واژه: Quantum Dots, Solar Cell, Quantum Materials, Graphene, Power Conversion Efficiency,
چکیده مقاله :
Solar cells are one of the most important equipment’s in the field of clean and novel energy that can be used without chemical pollution. Solar cells are very valuable equipment that by using them, in addition to reducing environmental pollution, can benefit from clean energy. Solar cells are generally used in various industries, including aerospace, clean energy and even transportation. In the meantime, increasing the efficiency of solar cells is of great importance, and the development of quantum science has made a significant contribution to this issue. The use of quantum dots containing different materials such as graphene, carbon, gallium, lead and similar materials can increase the efficiency of solar cells from 3 to more than 50% on average. Also, the power conversion efficiency in solar cells developed with quantum dot technology reports from 1 to more than 15% improvements compared to conventional solar cells. In this research, to summarize the latest achievements in this field, an overview of the importance of quantum dots about the development of solar cells has been done.
Solar cells are one of the most important equipment’s in the field of clean and novel energy that can be used without chemical pollution. Solar cells are very valuable equipment that by using them, in addition to reducing environmental pollution, can benefit from clean energy. Solar cells are generally used in various industries, including aerospace, clean energy and even transportation. In the meantime, increasing the efficiency of solar cells is of great importance, and the development of quantum science has made a significant contribution to this issue. The use of quantum dots containing different materials such as graphene, carbon, gallium, lead and similar materials can increase the efficiency of solar cells from 3 to more than 50% on average. Also, the power conversion efficiency in solar cells developed with quantum dot technology reports from 1 to more than 15% improvements compared to conventional solar cells. In this research, to summarize the latest achievements in this field, an overview of the importance of quantum dots about the development of solar cells has been done.
[1] Paraïso, T. K., Woodward, R. I., Marangon, D. G., Lovic, V., Yuan, Z., & Shields, A. J., Advanced laser technology for quantum communications (tutorial review). Adv. Quantum Technol. 2021; 4(10):2100062.
[2] Lee JH, Trier F, Bibes M. Complex Oxides. J. Physic. Mater. 2020; 3:042006.
[3] Kamat, Prashant V. Quantum dot solar cells. The next big thing in photovoltaics. J.Phys.Chem.Lett. 2013; 4(6):908-18.
[4] Paglione J, Butch NP, Rodriguez E. Fundamentals of quantum materials: a practical guide to synthesis and exploration. World Scientific; 2021.
[5] Shishodia S, Chouchene B, Greis T, Schneider R. Selected I-III-VI2 Semiconductors: Synthesis, Properties and Applications in Photovoltaic Cells. Nanomaterials. 2023; 13(21):2889.
[6] Cui, J., Panfil, Y. E., Koley, S., Shamalia, D., Waiskopf, N., Remennik, S. & Banin, U. Colloidal quantum dot molecules manifesting quantum coupling at room temperature. Nat. Commun., 2019;10(1), 5401.
[7] Septianto, R. D., Miranti, R., Kikitsu, T., Hikima, T., Hashizume, D., Matsushita, N. &Bisri, S. Z. Enabling metallic behaviour in two-dimensional superlattice of semiconductor colloidal quantum dots. NatCommun., 2023;14(1), 2670.
[8] Salama, H., Smaani, B., Nasri, F., & Tshipamba, A., Nanotechnology and Quantum Dot Lasers. J. Comp. Sci. Technol. Stud., 2023;5(1), 45-51.
[9] Alanezi, A., Abd El-Latif, A. A., Kolivand, H., & Abd-El-Atty, B., Quantum walks-based simple authenticated quantum cryptography protocols for secure wireless sensor networks. New J. Phys., 2023; 25(12), 123041.
[10] Carey, G. H., Abdelhady, A. L., Ning, Z., Thon, S. M., Bakr, O. M., & Sargent, E. H., Colloidal quantum dot solar cells. Chem. Rev., 2015;115(23), 12732-63,
[11] Connors, J., On the subject of solar vehicles and the benefits of the technology. In 2007 Int. Conf. on Clean Electr. Pwr. 2007, 700-5. IEEE.
[12] Lee, Y. J., Kim, B. S., Ifitiquar, S. M., Park, C., & Yi, J., Silicon solar cells: Past, present and the future. J. Korean Phys, Soc., 2014;65, 355-61.
[13] Maronchuk, I. I., Sanikovich, D. D., Davydova, E. V., &Tabachkova, N. Y., Cadmium telluride for high-efficiency solar cells. Modern Electron. Mater., 2023;9(1), 9-14.
[14] Li, X., Ma, B., Wang, C., Hu, D., Lü, Y., & Chen, Y., Recycling and recovery of spent copper—indium—gallium—diselenide (CIGS) solar cells: A Rev. Int. J. Miner. Metall. Mater., 2023;30(6), 989-1002.
[15] Paulo, S., Palomares, E., & Martinez-Ferrero, E. Graphene and carbon quantum dot-based materials in photovoltaic devices: From synthesis to applications. Nanomater.,2016; 6(9), 157.
[16] Xie, C., Zhang, X., Wu, Y., Zhang, X., Zhang, X., Wang, Y. & Jie, J., Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells. J. Mater. Chem. A, 2013;1(30), 8567-74.
[17] Das, A., Mondal, S. R., &Palai, G., Realization of graphene based quantum dot solar cell through the principle of photonics. Optik. 2020;221, 165283.
[18] Yan, X., Cui, X., Li, B., & Li, L. S., Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano lett., 2010; 10(5), 1869-73.
[19] Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J.Am.Chem.Soc., 2009;131(17), 6050-51.
[20] Quiroz, C. O. R., Shen, Y., Salvador, M., Forberich, K., Schrenker, N., Spyropoulos, G. D. & Brabec, C. J. Balancing electrical and optical losses for efficient 4-terminal Si–perovskite solar cells with solution processed percolation electrodes. J. Mater. Chem. A, 2018;6(8), 3583-92.
[21] Zhu, Z., Ma, J., Wang, Z., Mu, C., Fan, Z., Du, L. & Yang, S., Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J. Am. Chem. Soc., 2014;136(10), 3760-63.
[22] Teymourinia, H., Salavati-Niasari, M., Amiri, O., &Farangi, M., Facile synthesis of graphene quantum dots from corn powder and their application as down conversion effect in quantum dot-dye-sensitized solar cell., J. Mol. Liq., 2018;251, 267-72.
[23] Ahmed, D. S., Mohammed, M. K., & Majeed, S. M., Green synthesis of eco-friendly graphene quantum dots for highly efficient perovskite solar cells. ACS Appl. Energy Mater., 2020; 3(11), 10863-71.
[24] Zhao, C., Song, X., Liu, Y., Fu, Y., Ye, L., Wang, N. & Liu, J., Synthesis of graphene quantum dots and their applications in drug delivery., J. Nanobiotechnol., 2020;18, 1-32.
[25] Li, M., Ni, W., Kan, B., Wan, X., Zhang, L., Zhang, Q. & Chen, Y., Graphene quantum dots as the hole transport layer material for high-performance organic solar cells. Phys. Chem., 15(43),2013; 18973-78.
[26] Sk, M. A., Ananthanarayanan, A., Huang, L., Lim, K. H., & Chen, P., Revealing the tunable photoluminescence properties of graphene quantum dots. J. Mater. Chem. C, 2014;2(34), 6954-60.
[27] Lu, Y., Hao, H., Liu, P., Feng, Y., & Wang, J. Controllable synthesis of Graphene Quantum Dots with Tunable-Photoluminescence. In IOP Conf. Series: Mater. Sci. Eng. 2020;768, 2, p. 022073, IOP Publishing.
[28] Hussien, H., Ghatass, Z., Hassan, M. S., Soliman, M., & Ebrahim, S., Effect of carbon quantum dots and Zn2+ ion on perovskite solar cells. Journal of Mater. Sci.: Mater. Electron., 2023;34(21), 1596.
[29] Salem, A. M. S., El-Sheikh, S. M., Harraz, F. A., Ebrahim, S., Soliman, M., Hafez, H. S. & Abdel-Mottaleb, M. S. A., Inverted polymer solar cell based on MEH-PPV/PC61BM coupled with ZnO nanoparticles as electron transport layer. Appl. Surf. Sci., 2017, 425, 156-63.
[30] Kim, A., Dash, J. K., Kumar, P., & Patel, R., Carbon-based quantum dots for photovoltaic devices: a review. ACS Appl. Electron. Mater., 2021;4(1), 27-58.
[31] Huang, P., Xu, S., Zhang, M., Zhong, W., Xiao, Z., & Luo, Y., Carbon quantum dots improving photovoltaic performance of CdS quantum dot-sensitized solar cells. 2020;Opt. Mater.110, 110535.
[32] Vercelli, B., The role of carbon quantum dots in organic photovoltaics: a short overview. Coat., 2021;11(2), 232.
[33] Alkahtani, M., Alenzi, S. M., Alsolami, A., Alsofyani, N., Alfahd, A., Alzahrani, Y. A. &Abduljawad, M., High-Performance and Stable Perovskite Solar Cells Using Carbon Quantum Dots and Upconversion Nanoparticles. Int. J. Mol. Sci., 2022;23(22), 14441.
[34] Guo, X., Zhang, H., Sun, H., Tade, M. O., & Wang, S. Green synthesis of carbon quantum dots for sensitized solar cells. Chem. Photo. Chem., 2017;1(4), 116-19.
[35] Hanna, M. C., Ellingson, R. J., Beard, M., Yu, P., Micic, O. I., & Nozik, A. J., Quantum dot solar cells: High efficiency through multiple exciton generation (No. NREL/CP-590-37036). National Renewable Energy Lab. (NREL), Golden, CO (United States). (2005).
[36] Zhao, N., Osedach, T. P., Chang, L. Y., Geyer, S. M., Wanger, D., Binda, M. T. &Bulovic, V., Colloidal PbS quantum dot solar cells with high fill factor. ACS Nano, 2010;4(7), 3743-52.
[37] Kim, M. R., & Ma, D., Quantum-dot-based solar cells: recent advances, strategies, and challenges. The J. Phys. Chem. Lette., 2015;6(1), 85-9.
[38] Kumar, S., Bharti, P., & Pradhan, B., Performance optimization of efficient PbS quantum dots solar cells through numerical simulation. Sci. Rep., 2023;13(1), 10511.
[39] Ding, C., Wang, D., Liu, D., Li, H., Li, Y., Hayase, S. & Shen, Q., Over 15% Efficiency PbS Quantum‐Dot Solar Cells by Synergistic Effects of Three Interface Engineering: Reducing Nonradiative Recombination and Balancing Charge Carrier Extraction. Adv. Energy Mater., 2022;12(35), 2201676.
[40] Lu, K., Wang, Y., Yuan, J., Cui, Z., Shi, G., Shi, S. & Ma, W. Efficient PbS quantum dot solar cells employing a conventional structure. J. Mater. Chem. A, 2017;5(45), 23960-66.
[41] Sukharevska, N., Bederak, D., Goossens, V. M., Momand, J., Duim, H., Dirin, D. N. & Loi, M. A., Scalable PbS quantum dot solar cell production by blade coating from stable inks. ACS Appl. Mater. Interfaces, 2021;13(4), 5195-207.
[42] Hu, L., Zhang, Z., Patterson, R. J., Hu, Y., Chen, W., Chen, C. & Huang, S., Achieving high-performance PbS quantum dot solar cells by improving hole extraction through Ag doping. Nano Energy, 2018; 46, 212-19.
[43] Blachowicz, T., & Ehrmann, A., Recent developments of solar cells from PbS colloidal quantum dots. Appl. Sci., 2020;10(5), 1743.
[44] Pelekanos, N. T., Dialynas, G. E., Simon, J., Mariette, H., &Daudin, B., GaN quantum dots: from basic understanding to unique applications. In J. Phys.: Conf. Series 2005; 10, 1, p. 61. IOP Publishing.
[45] Zhai, L., Löbl, M. C., Nguyen, G. N., Ritzmann, J., Javadi, A., Spinnler, C. & Warburton, R. J., Low-noise GaAs quantum dots for quantum photonics. Nat. Commun. 2020;11(1), 4745.
[46] El Khalifi, Y., Lefebvre, P., Allègre, J., Gil, B., Mathieu, H., & Fukunaga, T. Electronic structure of (1 1 3)-grown GaAs-(GaAl) As single quantum wells under biaxial strain fields. Solid state. Commun., 1990; 75(8), 677-82.
[47] Benyettou, F., Aissat, A., Benamar, M. A., & Vilcot, J. P., Modeling and simulation of GaSb/GaAs quantum dot for solar cell. Energy Proced., 2015; 74, 139-47.
[48] Sugaya, T., Numakami, O., Oshima, R., Furue, S., Komaki, H., Amano, T. & Niki, S., Ultra-high stacks of InGaAs/GaAs quantum dots for high efficiency solar cells. Energy Environ. Sci., (2012); 5(3), 6233-37.
[49] Chettri, D., Singh, T. J., & SinghInAs/GaAs quantum dot solar cell. International Journal of Electronics, Electr. Computat. Sys., 6(3), 221-24.
[50] Okada, Y., Morioka, T., Yoshida, K., Oshima, R., Shoji, Y., Inoue, T., & Kita, T. Increase in photocurrent by optical transitions via intermediate quantum states in direct-doped InAs/GaNAs strain-compensated quantum dot solar cell. J. Appl. Phys., 2011;109(2).
[51] Sultana, S., & Alam, S. (2015, December). Optimization of Indium Gallium Nitride quantum dots for absorbing light from solar spectra. In IEEE. 2nd Int. Conf. Electr. Inform. Commun. Technol., (EICT) 2015; 394-98.
[52] Bhandari, S., Hao, B., Waters, K., Lee, C. H., Idrobo, J. C., Zhang, D. & Yap, Y. K., Two-dimensional gold quantum dots with tunable bandgaps. ACS nano, 2019;13(4), 4347-53.
[53] Khalifa, M., Jaduaa, M., & Abd, A., Quantum dots gold nanoparticle/porous silicon/silicon for solar cell applications. J. Nanostruct., 2020;10(4), 863-70.
[54] Phetsang, S., Phengdaam, A., Lertvachirapaiboon, C., Ishikawa, R., Shinbo, K., Kato, K. & Baba, A., Investigation of a gold quantum dot/plasmonic gold nanoparticle system for improvement of organic solar cells. Nanoscale Adv., 2019;1(2), 792-98.
[55] Kuntamung, K., Yaiwong, P., Lertvachirapaiboon, C., Ishikawa, R., Shinbo, K., Kato, K. & Baba, A., The effect of gold quantum dots/grating-coupled surface plasmons in inverted organic solar cells. R. Soc. open Sci., 2021; 8(3), 210022.
[56] Algar, W. R., Massey, M., & Krull, U. J., The application of quantum dots, gold nanoparticles and molecular switches to optical nucleic-acid diagnostics. TrAC Trends in Anal. Chem., 2009;28(3), 292-306.
[57] Minarowski, Ł., Sands, D., Minarowska, A., Karwowska, A., Sulewska, A., Gacko, M., &Chyczewska, E., Thiocyanate concentration in saliva of cystic fibrosis patients. Folia Histochemica et Cytobiol., 2008;46(2), 245-46,
[58] Moskwa, P., Lorentzen, D., Excoffon, K. J., Zabner, J., McCray Jr, P. B., Nauseef, W. M., ... & Bánfi, B. A novel host defense system of airways is defective in cystic fibrosis. U.S.A. J. Respir. Crit. Care Med., 2007;175(2), 174-83.
[59] Xu, Y., Szép, S., & Lu, Z. The antioxidant role of thiocyanate in the pathogenesis of cystic fibrosis and other inflammation-related diseases. Proceed. Nat. Acad. Sci., 2009; 106(48), 20515-19.
[60] Ahmed, S. R., Sherazee, M., Srinivasan, S., & Rajabzadeh, A. R.. Positively charged gold quantum dots: annanozymatic “off-on” sensor for thiocyanate detection. Foods, 2022;11(9), 1189.
[61] Yao, J., Yang, M., Liu, Y., & Duan, Y. Fluorescent CdS quantum dots: Synthesis, characterization, mechanism and interaction with gold nanoparticles. J. Nanosci. Nanotechnol., 2015; 15(5), 3720-27.
[62] Sonker, R. K., Shastri, R., & Johari, R. Superficial synthesis of CdS quantum dots for an efficient perovskite-sensitized solar cell. Energy & Fuels, 2021; 35(9), 8430-35.
[63] Lin, C. C., Chen, H. C., Tsai, Y. L., Han, H. V., Shih, H. S., Chang, Y. A., & Yu, P., Highly efficient CdS-quantum-dot-sensitized GaAs Solar cells. Opt. Express, 2012; 20(102), A319-A326.
[64] Khalid A, Easawi K, Abdallah S, El-Shaarawy MG, Negm S, Talaat H. Effect of CdS quantum dots size on Thermal and photovoltaic parameters of quantum dots sensitized solar cells. InIOP Conf. Series: Mater. Sci. Eng. 2020; 1, 762, p. 012007, IOP Publishing.
[65] Mao, X., Yu, J., Xu, J., Zhou, J., Luo, C., Wang, L. & Zhou, R. Enhanced performance of all solid-state quantum dot-sensitized solar cells via synchronous deposition of PbS and CdS quantum dots. New J. Chem., 2020; 44(2), 505-12.
[66] Crisp, R. W., Kirkwood, N., Grimaldi, G., Kinge, S., Siebbeles, L. D., &Houtepen, A. J. Highly photoconductive InP quantum dots films and solar cells. ACS Appl. Energy Mater.,2018; 1(11), 6569-76.
[67] Reiss, P., Carriere, M., Lincheneau, C., Vaure, L., & Tamang, S., Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem. Rev., 2016;116(18), 10731-819.
[68] Yin, X., Battaglia, C., Lin, Y., Chen, K., Hettick, M., Zheng, M. &Javey, A., 19.2% Efficient InP heterojunction solar cell with electron-selective TiO2 contact. ACS Photonics, 2014; 1(12), 1245-50.
[69] Wallentin, J., Anttu, N., Asoli, D., Huffman, M., Åberg, I., Magnusson, M. H. & Borgström, M. T., InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Sci., 2013; 339(6123), 1057-60.
[70] Harabi, I., Synthesis and Characterization of Indium Phosphide Quantum Dots for Photoelectrochemical Applications (2023);(Doctoral Dissertation, Universitat Politècnica de València).
[71] Chen, Y., Yu, S., Zhong, Y., Wang, Y., Ye, J., & Zhou, Y., Study of Indium Phosphide Quantum Dots/Carbon Quantum Dots System for Enhanced Photocatalytic Hydrogen Production from Hydrogen Sulfide. Process., 2023; 11(11), 3160.
[72] Abate, M. A., & Chang, J. Y., Boosting the efficiency of AgInSe2 quantum dot sensitized solar cells via core/shell/shell architecture. Solar Energy Mater. Solar Cells, 2018; 182, 37-44.
[73] Xue, J., Liu, J., Mao, S., Wang, Y., Shen, W., Wang, W. & Tang, J., Recent progress in synthetic methods and applications in solar cells of Ag2S quantum dots. Mater. Res. Bull., 2018; 106, 113-23.
[74] Feng, J., Li, Y., Gao, Z., Lv, H., Zhang, X., Fan, D., & Wei, Q. Visible-light driven label-free photoelectrochemical immunosensor based on TiO2/S-BiVO4@ Ag2S nanocomposites for sensitive detection OTA. Bios. Bioelectron., 2018; 99, 14-20.
[75] Amaya Suarez, J., Plata, J. J., Márquez, A. M., & Fernandez Sanz, J. Ag2S quantum dot-sensitized solar cells by first principles: The effect of capping ligands and linkers. J. Phys. Chem. A,2017;121(38), 7290-96.
[76] Tubtimtae, A., Wu, K. L., Tung, H. Y., Lee, M. W., & Wang, G. J. Ag2S quantum dot-sensitized solar cells. Electrochem. Commun., 2010; 12(9), 1158-60.
[77] Yang, Y., Pan, D. Q., Zhang, Z., Chen, T., Han, X., Zhang, L., & Guo, X. Photovoltaic Performance of Ag 2 Se Quantum Dots Co-Sensitized Solid-State Dye-Sensitized Solar Cells. J. Inorg. Mater.,2019; 34, 137-44.
[78] Ranjitha, A., Muthukumarasamy, N., Thambidurai, M., & Velauthapillai, D. Enhanced photovoltaic performance of quantum dot sensitized solar cells with Ag-doped TiO2 nanocrystalline thin films. J. Mater. Sci. Materi. Electron., 2014; 25, 2724-29.
[79] Zhou, R., Yang, X., & Cao, G. Visible to Near-Infrared Responsive PbS and Ag2S Quantum Dots as Efficient Sensitizers for Solar Cells. IEEE J. Photovolt., 2019; 10(1), 117-23.
[80] Borovaya, M., Horiunova, I., Plokhovska, S., Pushkarova, N., Blume, Y., & Yemets, A. Synthesis, properties and bioimaging applications of silver-based quantum dots. Int. J. Mol. Sci., 2021; 22(22), 12202.
[81] Li, Y., Wang, Z., Ren, D., Liu, Y., Zheng, A., Zakeeruddin, S. M. & Wang, P. SnS quantum dots as hole transporter of perovskite solar cells. ACS Appl. Energy Mater., 2019;2(5), 3822-29.
[82] Rahaman, S., Jagannatha, K. B., & Sriram, A. (Synthesis and characterization of SnS quantum dots material for solar cell. Mater. Today: Proceed., 2018;5(1), 3117-20.
[83] Deepa, K. G., & Nagaraju, J. Development of SnS quantum dot solar cells by SILAR method. Mater. sci. Semicond. process., 2014;27, 649-53.
[84] Melendres-Sánchez, JC, López-Delgado, R, Saavedra-Rodríguez, G, Carrillo-Torres, RC, Sánchez-Zeferino, R, Ayón, A, Álvarez-Ramos, ME. Zinc sulfide quantum dots coated with PVP: applications on commercial solar cells. J. Mater. Sci. Mater. Electron., 2021; 32, 1457-65.
[85] Nishimura, H, Maekawa, T, Enomoto, K, Shigekawa, N, Takagi, T, Sobue, S, Kim, D. Water-soluble ZnSe/ZnS: Mn/ZnS quantum dots convert UV to visible light for improved Si solar cell efficiency. J. Mater. Chem. C. 2021;9(2):693-701.
[86] Melendres-Sánchez, JC, López-Delgado, R, Saavedra-Rodríguez, G, Carrillo-Torres, RC, Sánchez-Zeferino, R, Ayón, A, Álvarez-Ramos, ME. Zinc sulfide quantum dots coated with PVP: applications on commercial solar cells. J. Mater. Sci., 2021; 32:1457-65.
[87] Zhang L, Pan, Z, Wang, W, Du, J, Ren, Z, Shen, Q, Zhong, X. Copper deficient Zn–Cu–In–Se quantum dot sensitized solar cells for high efficiency. J. Mater. Chem. 2017;5(40):21442-51.
[88] Kim, JY, Yang, J, Yu, JH, Baek, W, Lee, CH, Son, HJ, Ko, MJ. Highly efficient copper–indium–selenide quantum dot solar cells: suppression of carrier recombination by controlled ZnS overlayers. ACS nano., 2015; 9(11):11286-95.