Green Synthesis of Magnetite Nanoparticles (Fe₃O₄) Using Propolis Extract
Mahdi Safdari
1
(
Department of Environmental Health, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
)
Mohammad Mahdi Emamjomeh
2
(
Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
)
Abbas Rezaee
3
(
Department of Environmental Health, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
)
کلید واژه: Fe₃O₄ nanoparticles, Propolis, Green synthesis, Magnetic,
چکیده مقاله :
The magnetite nanoparticles have currently received considerable attention for their high biocompatibility, non-toxicity, and specific magnetic properties in various fields, particularly in the removal of environmental pollutants. The present study was to facilitate the production of Fe3O4 nanoparticles (NPs) as an environmentally friendly method via green synthesis. For this purpose, the Fe3O4 NPs were synthesized via coprecipitation (CPT) using the divalent (II) and trivalent (III) iron solutions and the propolis extract in the presence of the nitrogen (N2) gas. To characterize the synthesized NPs, the Fourier transform infrared (FTIR) mapping, the field emission scanning electron microscopy (FE-SEM), the X-ray diffraction (XRD), and the vibrating-sample magnetometry (VSM) were implemented. The obtained results from XRD analysis confirmed the production of high pure Fe3O4 crystals. The SEM micrographes of the synthesid Fe3O4 NPs revealed that their average diameter was 24 nm. The magnetic evaluationsed showed that the Fe3O4 NPs were in the superparamagnetic state with a saturation magnetization (Ms) of 12.6 emu g-1. This study demonstrated the appropriate physicochemical properties of the Fe3O4 NPs stabilized by the green synthesis using the propolis extract, which could be thus a suitable and practical alternative as well as an environmentally friendly one in preference to chemical substances.
چکیده انگلیسی :
The magnetite nanoparticles have currently received considerable attention for their high biocompatibility, non-toxicity, and specific magnetic properties in various fields, particularly in the removal of environmental pollutants. The present study was to facilitate the production of Fe3O4 nanoparticles (NPs) as an environmentally friendly method via green synthesis. For this purpose, the Fe3O4 NPs were synthesized via coprecipitation (CPT) using the divalent (II) and trivalent (III) iron solutions and the propolis extract in the presence of the nitrogen (N2) gas. To characterize the synthesized NPs, the Fourier transform infrared (FTIR) mapping, the field emission scanning electron microscopy (FE-SEM), the X-ray diffraction (XRD), and the vibrating-sample magnetometry (VSM) were implemented. The obtained results from XRD analysis confirmed the production of high pure Fe3O4 crystals. The SEM micrographes of the synthesid Fe3O4 NPs revealed that their average diameter was 24 nm. The magnetic evaluationsed showed that the Fe3O4 NPs were in the superparamagnetic state with a saturation magnetization (Ms) of 12.6 emu g-1. This study demonstrated the appropriate physicochemical properties of the Fe3O4 NPs stabilized by the green synthesis using the propolis extract, which could be thus a suitable and practical alternative as well as an environmentally friendly one in preference to chemical substances.
1. Raveendran P., Fu J., Wallen S.L., 2003. Completely “green” synthesis and stabilization of metal nanoparticles. Journal of the American Chemical Society. 125(46), 13940-13941.
2. Vallabani N.S., Singh S., 2018. Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. Biotech. 8(6), 279.
3. Gunalan S., Sivaraj R., Rajendran V., 2012. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progress in Natural Science: Materials International. 22(6), 693-700.
4. Shanker U., Jassal V., Rani M., Kaith B.S., 2016. Towards green synthesis of nanoparticles: from bio-assisted sources to benign solvents. A review. International Journal of Environmental Analytical Chemistry. 96(9), 801-835.
5. Yadav V.K., Fulekar M.H., 2018. Biogenic synthesis of maghemite nanoparticles (γ-Fe2O3) using Tridax leaf extract and its application for removal of fly ash heavy metals (Pb, Cd). Materials Today: Proceedings. 5(9), 20704-20710.
6. Anbarasu M., Anandan M., Chinnasamy E., Gopinath V., Balamurugan K., 2015. Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 135, 536-539.
7. Kemikli N., Kavas H., Kazan S., Baykal A., Ozturk R., 2010. Synthesis of protoporphyrin coated superparamagnetic iron oxide nanoparticles via dopamine anchor. Journal of Alloys and Compounds. 502(2), 439-444.
8. Mohapatra M., Anand S. 2010. Synthesis and applications of nano-structured iron oxides/hydroxides–a review. International Journal of Engineering, Science and Technology. 2(8). 10.4314/ijest.v2i8.63846.
9. Temizel E., Ayan E., Şenel M., Erdemi H., Yavuz M.S., Kavas H., Öztürk R., 2011. Synthesis, conductivity and magnetic properties of poly (N-pyrrole phosphonic acid)–Fe3O4 nanocomposite. Materials Chemistry and Physics. 131(1-2), 284-291.
10. Fried T., Shemer G., Markovich G., 2001. Ordered two‐dimensional arrays of ferrite nanoparticles. Advanced Materials. 13(15), 1158-1161.
11. Wu J.H., Ko S.P., Liu H.L., Kim S., Ju J.S., Kim Y.K. 2007. Sub 5 nm magnetite nanoparticles: Synthesis, microstructure, and magnetic properties. Materials Letters. 61(14-15), 3124-3129.
12. Challagulla S., Nagarjuna R., Ganesan R., Roy S. 2016. Acrylate-based polymerizable sol–gel synthesis of magnetically recoverable TiO2 supported Fe3O4 for Cr (VI) photoreduction in aerobic atmosphere. ACS Sustainable Chemistry & Engineering. 4(3), 974-982.
13. Xu J., Yang H., Fu W., Du K., Sui Y., Chen J., Zou G., 2007. Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. Journal of Magnetism and Magnetic Materials. 309(2), 307-311.
14. Neto D.M., Freire R.M., Gallo J., Freire T.M., Queiroz D.C., Ricardo N.M., Fechine P.B., 2017. Rapid sonochemical approach produces functionalized Fe3O4 nanoparticles with excellent magnetic, colloidal, and relaxivity properties for MRI application. The Journal of Physical Chemistry C. 121(43), 24206-24222.
15. Periyasamy S., Gopalakannan V., Viswanathan N., 2018. Enhanced chromium sorption and quick separation of magnetic hydrotalcite anchored biopolymeric composites using the hydrothermal method. Journal of Chemical & Engineering Data. 63(5), 1286-1299.
16. An B., Cheng K., Wang C., Wang Y., Lin W., 2016. Pyrolysis of metal–organic frameworks to Fe3O4@ Fe5C2 core–shell nanoparticles for Fischer–Tropsch synthesis. ACS Catalysis. 6(6), 3610-3618.
17. Chiu W.S., Radiman S., Abdullah M.H., Khiew P.S., Huang N.M., Abd-Shukor R., 2007. One pot synthesis of monodisperse Fe3O4 nanocrystals by pyrolysis reaction of organometallic compound. Materials Chemistry and Physics. 106(2-3), 231-235.
18. Li Z., Chen H., Bao H., Gao M., 2004. One-pot reaction to synthesize water-soluble magnetite nanocrystals. Chemistry of Materials. 16(8), 1391-1393.
19. Pinna N., Grancharov S., Beato P., Bonville P., Antonietti M., Niederberger M., 2005. Magnetite nanocrystals: nonaqueous synthesis, characterization, and solubility. Chemistry of Materials. 17(11), 3044-3049.
20. Sun L., Zhan L., Shi Y., Chu L., Ge G., He Z., 2014. Microemulsion synthesis and electromagnetic wave absorption properties of monodispersed Fe3O4/polyaniline core–shell nanocomposites. Synthetic metals. 187, 102-107.
21. Guo B., Sun J., Hu X., Wang Y., Sun Y., Hu R., Zhu J., 2018. Fe3O4-CoP x Nanoflowers Vertically Grown on TiN Nanoarrays as Efficient and Stable Electrocatalysts for Overall Water Splitting. ACS Applied Nano Materials. 2(1), 40-47.
22. Martínez-Mera I., Espinosa-Pesqueira M. E., Pérez-Hernández R., Arenas-Alatorre J., 2007. Synthesis of magnetite (Fe3O4) nanoparticles without surfactants at room temperature. Materials Letters. 61(23-24), 4447-4451.
23. Gnanaprakash G., Mahadevan S., Jayakumar T., Kalyanasundaram P., Philip J., Raj B., 2007. Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles. Materials chemistry and Physics. 103(1), 168-175.
24. Zheng K., Loh K.Y., Wang Y., Chen Q., Fan J., Jung T., Liu X., 2019. Recent advances in upconversion nanocrystals: Expanding the kaleidoscopic toolbox for emerging applications. Nano Today. 29, 100797.
25. Akintelu S.A., Olugbeko S.C., Folorunso A.S., 2020. A review on synthesis, optimization, characterization and antibacterial application of gold nanoparticles synthesized from plants. International Nano Letters. 10, 237-248.
26. Bashir A.K.H., Mayedwa N., Kaviyarasu K., Razanamahandry L.C., Matinise N., Bharuth-Ram K., Maaza M., 2019. Investigation of electrochemical performance of the biosynthesized α-Fe2O3 nanorods. Surfaces and Interfaces. 17, 100345.
27. Folorunso A., Akintelu S., Oyebamiji A.K., Ajayi S., Abiola B., Abdusalam I., Morakinyo A., 2019. Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata. Journal of Nanostructure in Chemistry. 9, 111-117.
28. Kamran U., Bhatti H.N., Iqbal M., Jamil S., Zahid M., 2019. Biogenic synthesis, characterization and investigation of photocatalytic and antimicrobial activity of manganese nanoparticles synthesized from Cinnamomum verum bark extract. Journal of Molecular Structure. 1179, 532-539.
29. Salem D.M., Ismail M.M., Aly-Eldeen M.A., 2019. Biogenic synthesis and antimicrobial potency of iron oxide (Fe3O4) nanoparticles using algae harvested from the Mediterranean Sea, Egypt. The Egyptian Journal of Aquatic Research. 45(3), 197-204.
30. Mondal P., Anweshan A., Purkait M.K., 2020. Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: A review. Chemosphere. 259, 127509.
31. Virkutyte J., Varma R.S., 2011. Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization. Chemical Science. 2(5), 837-846.
32. Ahmed S., Ahmad M., Swami B.L., Ikram S., 2016. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. Journal of Advanced Research. 7(1), 17-28.
33. Narayanan K.B., Sakthivel N., 2011. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Advances in Colloid and Interface Science. 169(2), 59-79.
34. Song J.Y., Jang H.K., Kim B.S., 2009. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochemistry. 44(10), 1133-1138.
35. Sorbiun M., Shayegan Mehr E., Ramazani A., Taghavi Fardood S., 2018. Green synthesis of zinc oxide and copper oxide nanoparticles using aqueous extract of oak fruit hull (jaft) and comparing their photocatalytic degradation of basic violet 3. International Journal of Environmental Research. 12, 29-37.
36. Singh J., Dutta T., Kim K.H., Rawat M., Samddar P., Kumar P., 2018. ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of Nanobiotechnology. 16, 1-24.
37. Dahoumane S.A., Yéprémian C., Djédiat C., Couté A., Fiévet F., Coradin T., Brayner, R., 2016. Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga. Journal of Nanoparticle Research. 18, 1-12.
38. El-Rafie H.M., El-Rafie M., Zahran M.K., 2013. Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydrate Polymers. 96(2), 403-410.
39. Husen A., Siddiqi K.S., 2014. Plants and microbes assisted selenium nanoparticles: characterization and application. Journal of Nanobiotechnology. 12, 1-10.
40. Khan M., Al-Marri A.H., Khan M., Shaik M.R., Mohri N., Adil S.F., Siddiqui M.R.H., 2015. Green approach for the effective reduction of graphene oxide using Salvadora persica L. root (Miswak) extract. Nanoscale research letters. 10, 1-9.
41. Cai Y., Shen Y., Xie A., Li S., Wang X., 2010. Green synthesis of soya bean sprouts-mediated superparamagnetic Fe3O4 nanoparticles. Journal of Magnetism and Magnetic Materials. 322(19), 2938-2943.
42. Yew Y.P., Shameli K., Miyake M., Kuwano N., Bt Ahmad Khairudin N.B., Bt Mohamad S.E., Lee K.X., 2016. Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale Research Letters. 11, 1-7.
43. Venkateswarlu S., Kumar B.N., Prasad C.H., Venkateswarlu P., Jyothi N.V.V., 2014. Bio-inspired green synthesis of Fe3O4 spherical magnetic nanoparticles using Syzygium cumini seed extract. Physica B: Condensed Matter. 449, 67-71.
44. Sajjadi M., Nasrollahzadeh M., Sajadi S.M., 2017. Green synthesis of Ag/Fe3O4 nanocomposite using Euphorbia peplus Linn leaf extract and evaluation of its catalytic activity. Journal of Colloid and Interface Science. 497, 1-13.
45. Yusefi M., Shameli K., Su Yee O., Teow S.Y., Hedayatnasab Z., Jahangirian H., Kuča K., 2021. Green synthesis of Fe3O4 nanoparticles stabilized by a Garcinia mangostana fruit peel extract for hyperthermia and anticancer activities. International Journal of Nanomedicine. 2515-2532.
46. Kataria N., Garg V.K., 2018. Green synthesis of Fe3O4 nanoparticles loaded sawdust carbon for cadmium (II) removal from water: regeneration and mechanism. Chemosphere. 208, 818-828.
47. Nnadozie E.C., Ajibade P.A., 2020. Green synthesis and characterization of magnetite (Fe3O4) nanoparticles using Chromolaena odorata root extract for smart nanocomposite. Materials Letters. 263, 127145.
48. Ramesh A.V., Rama Devi D., Mohan Botsa S., Basavaiah K., 2018. Facile green synthesis of Fe3O4 nanoparticles using aqueous leaf extract of Zanthoxylum armatum DC. for efficient adsorption of methylene blue. Journal of Asian Ceramic Societies. 6(2), 145-155.
49. Sari I.P., Yulizar Y., 2017. Green synthesis of magnetite (Fe3O4) nanoparticles using Graptophyllum pictum leaf aqueous extract. In IOP Conference Series: Materials Science and Engineering . 191(1), 012014.
50. Singh K.K., Senapati K.K., Sarma K.C., 2017. Synthesis of superparamagnetic Fe3O4 nanoparticles coated with green tea polyphenols and their use for removal of dye pollutant from aqueous solution. Journal of Environmental Chemical Engineering. 5(3), 2214-2221.
51. Abdullah M.M., Atta A.M., Allohedan H.A., Alkhathlan H.Z., Khan M., Ezzat A.O., 2018. Green synthesis of hydrophobic magnetite nanoparticles coated with plant extract and their application as petroleum oil spill collectors. Nanomaterials. 8(10), 855.
52. Huang S., Zhang C.P., Wang K., Li G.Q., Hu F.L., 2014. Recent advances in the chemical composition of propolis. Molecules. 19(12), 19610-19632.
53. Biscaia D., Ferreira S.R., 2009. Propolis extracts obtained by low pressure methods and supercritical fluid extraction. The Journal of Supercritical Fluids. 51(1), 17-23.
54. Daleprane J.B., Abdalla D.S., 2013. Emerging roles of propolis: antioxidant, cardioprotective, and antiangiogenic actions. Evidence‐Based Complementary and Alternative Medicine. 2013(1), 175135.
55. Sforcin J.M., 2007. Propolis and the immune system: a review. Journal of Ethnopharmacology. 113(1), pp.1-14.
56. Tatli Seven P., Seven I., Gul Baykalir B., Iflazoglu Mutlu S., Salem A.Z., 2018. Nanotechnology and nano-propolis in animal production and health: An overview. Italian Journal of Animal Science. 17(4), 921-930.
57. Kubiliene L., Laugaliene V., Pavilonis A., Maruska A., Majiene D., Barcauskaite K., Kubilius R., Kasparaviciene G., Savickas A., 2015. Alternative preparation of propolis extracts: comparison of their composition and biological activities. BMC Complementary and Alternative Medicine. 15, 1-7.
58. Roch, B.A., Bueno P.C.P., Vaz M.M.D.O.L.L., Nascimento A.P., Ferreira N.U., Moreno G.D.P., Rodrigues M.R., Costa-Machado A.R.D.M., Barizon E.A., Campos J.C.L. De Oliveira P.F., 2013. Evaluation of a propolis water extract using a reliable RP‐HPLC methodology and in vitro and in vivo efficacy and safety characterisation. Evidence‐Based Complementary and Alternative Medicine. 2013(1), 670451.
59. Barsola B. and Kumari P., 2022. Green synthesis of nano-propolis and nanoparticles (Se and Ag) from ethanolic extract of propolis, their biochemical characterization: A review. Green Processing and Synthesis. 11(1), 659-673.
60. Hatami R., Javadi A., Jafarizadeh-Malmiri H., 2020. Effectiveness of six different methods in green synthesis of selenium nanoparticles using propolis extract: Screening and characterization. Green Processing and Synthesis. 9(1), 685-692.
61. Botteon C.E.A., Silva L.B., Ccana-Ccapatinta G.V., Silva T.S., Ambrosio S.R., Veneziani R.C.S., Bastos J.K., Marcato P.D., 2021. Biosynthesis and characterization of gold nanoparticles using Brazilian red propolis and evaluation of its antimicrobial and anticancer activities. Scientific Reports. 11(1), 1974.
62. Tahmasebi E., Mohammadi M., Yazdanian M., Alam M., Abbasi K., Hosseini H.M., Tavakolizadeh M., Khayatan D., Hassani Z., Tebyaniyan H., 2023. Antimicrobial properties of green synthesized novel TiO2 nanoparticles using Iranian propolis extracts. Journal of Basic Microbiology. 63(9), 1030-1048.
63. Hajizadeh Y.S., Harzandi N., Babapour E., Yazdanian M., Ranjbar R., 2022. Green synthesize and characterization of copper nanoparticles using Iranian propolis extracts. Advances in Materials Science and Engineering. 2022(1), 8100440.
64. PD D.A., Plashintania D.R., Putri, R.M., Wibowo I., Ramli Y., Herdianto S., Indarto, A., 2023. Synthesis of zinc oxide nanoparticles using methanol propolis extract (Pro-ZnO NPs) as antidiabetic and antioxidant. Plos one. 18(7), 0289125.
65. Adnani A., Darvishi S., Mohammadi K., 2016. Evaluation of the effects of extraction of Kurdistan propolis on biochemical and microbiological parameters of rainbow trout (Oncorhynchus mykiss). Iranian Scientific Fisheries Journal. 25(4), 41-52.
66. Barbarić M., Mišković K., Bojić M., Lončar M.B., Smolčić-Bubalo A., Debeljak Ž., Medić-Šarić M., 2011. Chemical composition of the ethanolic propolis extracts and its effect on HeLa cells. Journal of Ethnopharmacology. 135(3), 772-778.
67. Yousefinejad V., Darvishi N., Vahabzadeh Z., Babahajian A., Davoodi S.H., 2022. Determination of Major Active Components in the Iranian (Kurdistan) Propolis Extract by HPLC. Scientific Journal of Kurdistan University of Medical Sciences. 27(2), 38-45.
68. Abdelfatah A.M., Fawzy M., El-Khouly M.E., Eltaweil A.S., 2021. Efficient adsorptive removal of tetracycline from aqueous solution using phytosynthesized nano-zero valent iron. Journal of Saudi Chemical Society. 25(12), 101365.
69. Eslami S., Ebrahimzadeh M.A., Biparva P., 2018. Green synthesis of safe zero valent iron nanoparticles by Myrtus communis leaf extract as an effective agent for reducing excessive iron in iron-overloaded mice, a thalassemia model. RSC Advances. 8(46), 26144-26155.
70. Reddy N.J., Vali D.N., Rani M., Rani, S.S., 2014. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Materials Science and Engineering: C. 34, 115-122.
71. Holzwarth U., Gibson N., 2011. The Scherrer equation versus the'Debye-Scherrer equation'. Nature Nanotechnology. 6(9), 534-534.
72. López-López M.T., Durán J.D.G., Delgado A.V., González-Caballero F., 2005. Stability and magnetic characterization of oleate-covered magnetite ferrofluids in different nonpolar carriers. Journal of Colloid and Interface Science. 291(1), 144-151.
73. Maity D., Agrawal D.C., 2007. Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. Journal of Magnetism and Magnetic Materials. 308(1), 46-55.
74. Kolhatkar A.G., Chen Y.T., Chinwangso P., Nekrashevich I., Dannangoda G.C., Singh A., Jamison A.C., Zenasni O., Rusakova I.A., Martirosyan K.S., Litvinov D., 2017. Magnetic sensing potential of Fe3O4 nanocubes exceeds that of Fe3O4 nanospheres. ACS omega. 2(11), 8010-8019.
75. Kolhatkar A.G., Jamison A.C., Litvinov D., Willson R.C., Lee, T.R., 2013. Tuning the magnetic properties of nanoparticles. International journal of molecular sciences. 14(8), 15977-16009.
76. Lisjak D., Mertelj A., 2018. Anisotropic magnetic nanoparticles: A review of their properties, syntheses and potential applications. Progress in Materials Science. 95, 286-328.