سنجش عملکرد مستمر به کمک مدل های تحلیل پوششی داده ها: رویکردی برای سنجش پایداری صنایع
محورهای موضوعی : تحقیق در عملیات و بهینه سازی سیستم ها و فرایندها
1 - عضو هیات علمی گروه مدیریت صنعتی، واحد تهران، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: تحلیل پوششی دادهها, کارایی نسبی, خروجی نامطلوب, کارایی مولفه ای, سنجش مستمر ,
چکیده مقاله :
در این مقاله، به بررسی یک رویکرد کمی برای سنجش و پایش عملکرد مستمر صنایع با استفاده از مدلهای تحلیل پوششی دادهها (DEA) با حضور خروجیهای نامطلوب که اثر منفی بر پایداری صنایع دارند، پرداخته شده است. این مدلها به عنوان ابزارهای قدرتمند، قابلیت بهکارگیری با دادههای مختلف را دارند و برای تحلیل ارتباطات پیچیده بین متغیرهای مختلف عملکردی در صنایع گوناگون استفاده میشوند. این روش به شناسایی، ارزیابی و پایش عوامل مؤثر در عملکرد صنایع و بررسی تغییرات در آنها کمک میکند. استفاده از این روش دارای مزایای بسیاری است. از جمله این مزایا میتوان به تعیین و تحلیل عوامل کلیدی مؤثر بر عملکرد، پیشبینی روندهای آتی، و ایجاد امکانات بهبود عملکرد اشاره کرد. همچنین، این روش به صنایع کمک میکند تا با پایش مستمر عملکرد خود و بررسی کارایی و سطح عملکرد در دورههای مختلف، به پایداری و بهرهوری بیشتر دست یابند و خروجیهای نامطلوب را کنترل کنند. با استفاده از مدلهای تحلیل پوششی دادهها به عنوان یک رویکرد قابل اعتماد، میتوان بهبود و پایداری عملکرد صنایع را به دقت پایش کرد. این رویکرد، با توانایی ارزیابی عملکرد هسته یک کسب و کار، مدیریت، فرآیندها، نیروی انسانی و داراییهای مختلف، میتواند نسخه بهبود یافتهای ارائه دهد و به دستیابی به نتایج مطمئنتر کمک کند. این نسخه بهبود یافته، پتانسیل شرکت را برای اعتماد به توانایی تابآوری در محیط رقابتی نمایان میسازد. بهصورت موردی، در این مطالعه دادههای مربوط به یک بانک در بیست استان کشور مورد آزمایش قرار گرفتهاند. نتایج نشان میدهد که مدلهای تحلیل پوششی دادهها میتوانند به طور موثر نقاط ضعف و قوت عملکرد بانکها را شناسایی کرده و به مدیران برای اتخاذ تصمیمات بهتر و بهبود عملکرد کمک کنند. بدین ترتیب، این مدلها میتوانند به عنوان ابزاری کارآمد در جهت ارتقای عملکرد و کاهش اثرات منفی خروجیهای نامطلوب به کار گرفته شوند
This article examines a quantitative approach for assessing and continuously monitoring industrial performance using Data Envelopment Analysis (DEA) models, which account for undesirable outputs that negatively impact industrial sustainability. These models, as powerful tools, are capable of handling diverse data types and are used to analyze the complex relationships between various performance variables across different industries. This method enables the identification, evaluation, and monitoring of factors affecting industrial performance and examines changes in their performance over time. The use of DEA models offers numerous advantages. Among these benefits are the ability to determine and analyze key factors influencing performance, predict future trends, and create opportunities for performance improvement. Additionally, this method helps industries continuously monitor their performance, assess efficiency levels across different periods, achieve greater sustainability and productivity, and control undesirable outputs. By employing DEA models as a reliable approach, industrial performance improvement and sustainability can be precisely monitored. This approach, with its ability to evaluate the core performance of a business, management levels, processes, human resources, and various assets—including tangible and intangible assets—can ultimately provide an improved version of operations and help achieve more reliable results. This improved version reveals the company's potential to remain resilient in its competitive environment. As a case study, this research analyzed data from a bank across twenty provinces in the country. The results indicate that DEA models can effectively identify strengths and weaknesses in the bank's performance, assisting managers in making better decisions and improving overall performance. Thus, DEA models can be employed as effective tools to enhance performance and mitigate the negative impacts of undesirable outputs across various industries.
1. Ahmad, N., & Seetanah, B. (2019). Sustainable development of the banking sector: A review and DEA-based performance assessment. [DOI: 10.1016/j.rser.2018.09.026]
2. Azadeh, A., Asadzadeh, S. M., & Gholami, S. (2015). A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency. [DOI: 10.1016/j.enconman.2014.12.044]
3. Cooper, W. W., Seiford, L. M., & Tone, K. (2007). The basic CCR model. Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software, 21-39.
4. Diez-Cañamero, B., Bishara, T., Otegi-Olaso, J. R., Minguez, R., & Fernández, J. M. (2020). Measurement of corporate social responsibility: A review of corporate sustainability indexes, rankings and ratings. Sustainability, 12(5), 2153. [DOI: 10.3390/su12052153]
5. Ertay, T., Büyüközkan, G., & Kahraman, C. (2008). A DEA–Topsis method for supplier selection problem: A case study in the automotive industry. [DOI: 10.1016/j.omega.2007.05.011]
6. Eslamian, S., Gholamnejad, S., & Nabipour, I. (2019). Assessment of sustainability in the healthcare sector: A systematic literature review. [DOI: 10.1016/j.jclepro.2019.117083]
7. Farzipoor Saen, R., & Sohrabi, B. (2018). An integrated approach for evaluating the sustainable development of transportation systems using DEA and TOPSIS. [DOI: 10.1016/j.tre.2018.08.009]
8. Fukuyama, H., & Weber, W. L. (2016). A review of environmental efficiency measurement with directional distance functions: A metafrontier approach. [DOI: 10.1016/j.erss.2016.04.012]
9. Lotfi, F. H., Jahanshahloo, G. R., & Esmaeili, M. (2007). Classification of decision-making units with interval data using SBM model. Applied Mathematical Sciences, 1(14), 681-689.
10. Lotfi, F. H., Saen, R. F., Moghaddas, Z., & Vaez-Ghasemi, M. (2023). Using an SBM-NDEA model to assess the desirable and undesirable outputs of sustainable supply chain: A case study in wheat industry. Socio-Economic Planning Sciences, 89, 101699. [DOI: 10.1016/j.seps.2022.101699]
11. Malik, A., Sharma, S., Batra, I., Sharma, C., Kaswan, M. S., & Garza-Reyes, J. A. (2024). Industrial revolution and environmental sustainability: An analytical interpretation of research constituents in Industry 4.0. International Journal of Lean Six Sigma, 15(1), 22-49. [DOI: 10.1108/IJLSS-06-2022-0157]
12. Mardani, A., & Zavadskas, E. K. (2017). Assessment of sustainable development of cities: A comprehensive review of the literature. [DOI: 10.1016/j.scs.2017.02.016]
13. Mohammadi, S., & Tavana, M. (2018). Assessment of energy sustainability under multiple perspectives: A combined approach using DEA and TOPSIS. [DOI: 10.1016/j.jclepro.2018.02.189]
14. Moghaddas, Z., Vaez-Ghasemi, M., & Lotfi, F. H. (2021). A novel DEA approach for evaluating sustainable supply chains with undesirable factors. Economic Computation & Economic Cybernetics Studies & Research, 55(2).
15. Paramanathan, S., Farrukh, C., Phaal, R., & Probert, D. (2004). Implementing industrial sustainability: The research issues in technology management. R&D Management, 34(5), 527-537. [DOI: 10.1111/j.1467-9310.2004.00363.x]
16. Ramanathan, R., & Gunasekaran, A. (2014). Assessment of environmental sustainability in developing countries: A DEA approach. [DOI: 10.1016/j.ecolind.2013.11.013]
17. Reid, S. W. J., & Mahadeo, S. (2018). Assessing sustainable development in the Caribbean: A DEA approach. [DOI: 10.1016/j.ecolind.2018.05.060]
18. Saboori, B., & Sulaiman, J. (2013). Evaluation of sustainable development in the energy sector: A dynamic data envelopment analysis approach. [DOI: 10.1016/j.enpol.2013.05.062]
19. Santos, C. D., & Rua, O. L. (2015). Assessing the sustainability of higher education institutions: A DEA approach. [DOI: 10.1016/j.omega.2014.07.005]
20. Sarkis, J., & Talluri, S. (2002). A review of sustainability assessment models and methods in DEA context.
21. Shahriari, M. (2011). Malmquist Productivity Index for Two-stage Structures and its Applications in Bank Branches. International Journal of Industrial Mathematics, 3(4), 325-335. [DOI: 10.5267/j.ijim.2011.07.002]
22. Shahriari, M. (2013). Ranking Network-Structured Decision-Making Units and Its Application in Bank Branches. International Journal of Industrial Mathematics, 5(4), 397-402. [DOI: 10.5267/j.ijim.2013.10.002]
23. Sharma, A., Goyal, S., & Gupta, R. (2019). Measuring sustainable development of Indian states using data envelopment analysis. [DOI: 10.1016/j.techfore.2018.08.034]
24. Soleimani-damaneh, M., Kordrostami, S., & Ghaderi, S. F. (2016). Sustainable development assessment using data envelopment analysis and principal component analysis: A case study of OECD countries. [DOI: 10.1016/j.erss.2016.02.001]
25. Yang, Y., Wang, K., & Nie, P. (2019). Assessment of sustainable development based on DEA and grey relational analysis: A case study of China. [DOI: 10.1016/j.jclepro.2018.12.171]
26. Zailani, S., & Suradi, N. R. M. (2012). A review of sustainable supply chain management using DEA approach. [DOI: 10.1504/IJSTM.2013.052704]
27. Zhao, Z., Zhou, Y., & Zhang, X. (2019). Evaluation of sustainable development of China’s industrial economy based on the improved DEA model. [DOI: 10.1016/j.resconrec.2018.09.011]