Optimization techniques and microgrid control strategies based on renewable energy sources
محورهای موضوعی : انرژیهای تجدید پذیر و شبکه های هوشمند
1 - دانشجو
کلید واژه: hybrid microgrids, renewable energy source, power quality, optimization techniques, control strategies,
چکیده مقاله :
Microgrids (MGs) play a pivotal role in seamlessly integrating Renewable Energy Sources (RESs) and Energy Storage Systems (ESSs) into the electrical grid, offering enhanced efficiency, reduced transmission losses, and economic benefits. However, the intermittent nature of RESs due to the stochastic availability of renewable resources introduces challenges to power quality across the grid. Addressing these challenges necessitates the application of optimization techniques and control strategies to power converters. This comprehensive review delves into three crucial dimensions: (i) The powerquality issues arising in MGs during both islanded and grid-connected operations; (ii) Optimization techniques employed within MGs to achieve optimal Energy Management System (EMS) performance; and (iii) Control strategies executed in MGs to ensure stability, mitigate power-quality concerns, achieve power balance, and synchronize with the grid. Significantly, this paper underscores the significance of hybrid MGs (HMGs), which amalgamate the strengths of AC–MGs and DC–MGs to enhance system reliability. As the utility grid gravitates towards refined MG structures, this review lays the groundwork for forthcoming research, comparative evaluations, and the advancement of pioneering techniques in the realm of HMGs.
[1].Babatunde, O.M.; Munda, J.L.; Hamam, Y. A Comprehensive state-of-the-art survey
on Hybrid Renewable Energy System Operations and Planning. IEEE Access 2020, 8,
75313–75346.
[2].Gong, X.; Dong, F.; Mohamed, M.A.; Abdalla, O.M.; Ali, Z.M. A Secured Energy
Management Architecture for Smart Hybrid Microgrids Considering PEM-Fuel Cell
and Electric Vehicles. IEEE Access 2020, 8, 47807–47823.
[3].Yang, L.; Tai, N.; Fan, C.; Meng, Y. Energy regulating and fluctuation stabilizing by
air source heat pump and battery energy storage system in microgrid. Renew. Energy
2016, 95, 202–212.
[4].Bolgouras, V.; Ntantogian, C.; Panaousis, E.; Xenakis, C. Distributed Key
Management in Microgrids. IEEE Trans. Ind. Inform. 2020, 16, 2125–2133.
[5].Yoldas, Y.; Önen, A.; Muyeen, S.M.; Vasilakos, A.V.; Alan, I. Enhancing Smart Grid
with Microgrids: Challenges and Opportunities. Renew. Sustain. Energy Rev. 2017,
72, 205–214.
[6].Cagnano, A.; De Tuglie, E.; Mancarella, P. Microgrids: Overview and Guidelines for
Practical Implementations and Operation. Appl. Energy 2020, 258, 114039.
[7].Hirsch, A.; Parag, Y.; Guerrero, J.M. Microgrids: A Review of Technologies, Key
Drivers, and Outstanding Issues. Renew. Sustain. Energy Rev. 2018, 90, 402–411.
[8].Rajesh, K.S.; Dash, S.S.; Rajagopal, R.; Sridhar, R. A review on control of AC
microgrid. Renew. Sustain. Energy Rev. 2017, 71, 814–819.
[9].Zuo, S.; Davoudi, A.; Song, Y.; Lewis, F.L. Distributed finite-time voltage and
frequency restoration in islanded AC microgrids. IEEE Trans. Ind. Electron. 2016, 63,
5988–5997.
[10]. Veneri, O. Technologies and Applications for Smart Charging of Electric and Plugin Hybrid Vehicles, 1st ed.; Springer: Cham, Switzerland, 2017; pp. 39–64.
[11]. Lotfi, H.; Khodaei, A. AC versus DC microgrid planning. IEEE Trans. Smart Grid
2017, 8, 296–304.[12]. Mohamad, A.M.E.I.; Mohamed, Y.A.R.I. Investigation and assessment of
stabilization solutions for DC microgrid with dynamic loads. IEEE Trans. Smart Grid
2019, 10, 5735–5747.
[13]. Ma, T.; Cintuglu, M.H.; Mohammed, O.A. Control of a hybrid AC/DC microgrid
involving energy storage and pulsed loads. IEEE Trans. Ind. Appl. 2017, 53, 567–575.
[14]. Samal, S.; Hota, P.K. Power quality improvement by solar photovoltaic/wind
energy integrated system using unified power quality conditioner. Int. J. Power
Electron. Drive Syst. 2017, 8, 1424.
[15]. Shuai, Z.; Sun, Y.; Shen, Z.J.; Tian, W.; Tu, C.; Li, Y.; Yin, X. Microgrid stability:
Classification and a review. Renew. Sustain. Energy Rev. 2016, 58, 167–179.
[16]. Zia, M.F.; Elbouchikhi, E.; Benbouzid, M. Microgrids energy management systems:
A critical review on methods, solutions, and prospects. Appl. Energy 2018, 222, 1033–
1055.
[17]. Mumtaz, F.; Bayram, I.S. Planning, operation, and protection of microgrids: An
overview. Energy Procedia 2017, 107, 94–100.
[18]. Hosseini, S.A.; Abyaneh, H.A.; Sadeghi, S.H.H.; Razavi, F.; Nasiri, A. An
overview of microgrid protection methods and the factors involved. Renew. Sustain.
Energy Rev. 2016, 64, 174–186.
[19]. Naikand, L.; Palanisamy, K. Design and performance of a PV–STATCOM for
enhancement of power quality in micro grid applications. Int. J. Power Electron. Drive
Syst. 2017, 8, 1408–1415.
[20]. Hashempour, M.M.; Lee, T.L. Integrated power factor correction and voltage
fluctuation mitigation of microgrid using STATCOM. In Proceedings of the IEEE 3rd
International Future Energy Electronics Conference and ECCE Asia, Kaohsiung,
Taiwan, 3–7 June 2017; pp. 1215–1219.
[21]. Thahaand, H.S.; Prakash, T.R.D. Reduction of power quality issues in micro-grid
using fuzzy logic-based DVR. Int. J. Appl. Eng. Res. 2018, 13, 9746–9751.
[22]. Loureiro, P.C.; Variz, A.M.; Oliveira, L.W.; Oliveira, A.R.; Pereira, J.L.R. ANNbased SVC tuning for voltage and harmonics control in microgrids. J. Control Autom.
Electr. Syst. 2017, 28, 114–122.
[23]. Al-Shetwi, A.Q.; Hannan, M.A.; Jern, K.P.; Alkahtani, A.A.; Abas, A.E.P.G. Power
quality assessment of grid-connected PV system in compliance with the recent
integration requirements. Electronics 2020, 9, 366.
[24]. Gayatri, M.T.L.; Parimi, A.M.; Kumar, A.V.P. Utilization of unified power quality
conditioner for voltage sag/swell mitigation in microgrid. In Proceedings of the
Biennial International Conference on Power and Energy Systems: Towards Sustainable
Energy (PESTSE), Bengaluru, India, 21–23 January 2016; pp. 1–6.
[25]. Gabbar, H.A. Smart Energy Grid Engineering; Joe Hayton: Manitoba, CA, USA,
2017.[26]. Planas, E.; Andreu, J.; Garate, J.I.; De Alegría, I.M.; Ibarra, E. AC and DC
technology in microgrids: A review. Renew. Sustain. Energy Rev. 2015, 43, 726–749.
[27]. Jia, L.; Zhu, Y.; Wang, Y. Architecture design for new AC-DC hybrid micro-grid.
In Proceedings of the 2015 IEEE First International Conference on DC Microgrids
(ICDCM), Atlanta, GA, USA, 7–10 June 2015; pp. 113–118.
[28]. Lasseter, R.H.; Eto, J.H.; Schenkman, B.; Stevens, J.; Vollkommer, H.; Klapp, D.;
Linton, E.; Hurtado, H.; Roy, J. CERTS microgrid laboratory test bed. IEEE Trans.
Power Deliv. 2022, 26, 325–332.
[29]. Unamuno, E.; Barrena, J.A. Hybrid ac/dc microgrids—Part I: Review and
classification of topologies. Renew. Sustain. Energy Rev. 2015, 52, 1251–1259.
[30]. Guerrero, J.M.; Vasquez, J.C.; Matas, J.; De Vicuña, L.G.; Castilla, M. Hierarchical
control of droop-controlled AC and DC microgrids—A general approach toward
standardization. IEEE Trans. Ind. Electron. 2022, 58, 158–172.
[31]. Gao, Y.; Ai, Q. Distributed cooperative optimal control architecture for AC
microgrid with renewable generation and storage. Int. J. Electr. Power Energy Syst.
2018, 96, 324–334.
[32]. Vega, A.M.; Santamaria, F.; Rivas, E. Modeling for home electric energy
management: A review. Renew. Sustain. Energy Rev. 2015, 52, 948–959.
[33]. Bevrani, H.; François, B.; Ise, T. Microgrid Dynamics and Modeling; John Wiley &
Sons: Hoboken, NJ, USA, 2017.
[34]. Dimarzio, G.; Angelini, L.; Price, W.; Chin, C.; Harris, S. The stillwater triple
hybrid power plant: Integrating geothermal, solar photovoltaic and solar thermal power
generation. In Proceedings of the Proceedings World Geothermal Congress 2015,
Melbourne, Australia, 9–25 April 2015; pp. 1–5.
[35]. Franco, A.A. Rechargeable Lithium Batteries: From Fundamentals to Application;
Woodhead Publishing Elsevier Ltd.: Cambridge, UK, 2015.
[36]. Hallam, C.R.A.; Alarco, L.; Karau, G.; Flannery, W.; Leffel, A. Hybrid closed-loop
renewable energy systems: El Hierro as a model case for discrete power systems. In
Proceedings of the 2012 Proceedings of PICMET ‘12: Technology Management for
Emerging Technologies, Vancouver, BC, Canada, 29 July–2 August 2012; pp. 2957–
2969.
[37]. Ji, P.; Zhou, X.X.; Wu, S. Review on sustainable development of island microgrid.
In Proceedings of the APAP 2022—Proceedings: 2022 International Conference on
Advanced Power System Automation and Protection, Beijing, China, 16–20 October
2022; Volume 3, pp. 1806–1813.
[38]. Galleguillos-Pozo, R.; Domenech, B.; Ferrer-Martí, L.; Pastor, R. Balancing cost
and demand in electricity access projects: Case studies in Ecuador, Mexico and Peru.
Mathematics 2022, 10, 1995.[39]. Piesciorovsky, E.C.; Smith, T.; Ollis, T.B. Protection schemes used in North
America microgrids. Int. Trans. Electr. Energy Syst. 2020, 30, 12461.
[40]. Liu, G.; Li, Z.; Xue, Y.; Tomsovic, K. Microgrid assisted design for remote areas.
Energies 2022, 15, 3725.
[41]. Gordillo, C.; Martínez, J.; Rodríguez, E.; Arau, J.; Capilla, A. Experimental 1 kW
DC Micro-Grid based on PV Systems: Strategy based on NI LabVIEW Platform. IEEE
Lat. Am. Trans. 2018, 16, 2625–2633.
[42]. Rey, J.M.; Vera, G.A.; Acevedo-Rueda, P.; Solano, J.; Mantilla, M.A.; Llanos, J.;
Sáez, D. A review of microgrids in Latin America: Laboratories and Test Systems.
IEEE Lat. Am. Trans. 2022, 20, 1000–1011.
[43]. Gao, D.W.; Muljadi, E.; Tian, T.; Miller, M.; Wang, W. Comparison of Standards
and Technical Requirements of Grid-Connected Wind Power Plants in China and the
United States; Technical Report NREL/TP-5D00-64225; National Renewable Energy
Lab.: Golden, CO, USA, 2016.
[44]. García-Vera, Y.E.; Dufo-López, R.; Bernal-Agustín, J.L. Optimization of Isolated
Hybrid Microgrids with Renewable Energy Based on Different Battery Models and
Technologies. Energies 2020, 13, 581.
[45]. Nejabatkhah, F.; Li, Y.W. Overview of Power Management Strategies of Hybrid
AC/DC Microgrid. IEEE Trans. Power Electron. 2015, 30, 7072–7089.
[46]. Malik, S.M.; Sun, Y.; Ai, X.; Chen, Z.; Wang, K. Cost-Based Droop Scheme for
Converters in Interconnected Hybrid Microgrids. IEEE Access 2019, 7, 82266–82276.
[47]. Alsiraji, H.A.; El-Shatshat, R. Serious Operation Issues and Challenges Related to
Multiple Interlinking Converters Interfacing a Hybrid AC/DC Microgrid. In
Proceedings of the 2018 IEEE Canadian Conference on Electrical Computer
Engineering (CCECE), Quebec City, QC, Canada, 13–16 May 2018; pp. 1–5.
[48]. Kow, K.W.; Wong, Y.W.; Rajkumar, R.K. Power quality analysis for PV grid
connected system using PSCAD/EMTDC. Int. J. Renew. Energy Res. 2015, 5, 121–
132.
[49]. Hossain, M.A.; Pota, H.R.; Hossain, M.J.; Blaabjerg, F. Evolution of Microgrids
with Converter-Interfaced Generations: Challenges and Opportunities. Int. J. Electr.
Power Energy Syst. 2019, 109, 160–186.
[50]. Hu, W.X.; Xiao, X.Y.; Zheng, Z.X. Voltage sag/swell waveform analysis method
based on multidimension characterization. IET Gener. Transm. Distrib. 2020, 14, 486–
493.
[51]. Zheng, F.; Chen, Y.; Zhang, Y.; Lin, Y.; Guo, M. Low voltage ride through
capability improvement of microgrid using a hybrid coordination control strategy. J.
Renew. Sustain. Energy 2019, 11, 034102.
[52]. Kim, Y.J. Development and analysis of a sensitivity matrix of a three–phase voltage
unbalance factor. IEEE Trans. Power Syst. 2018, 33, 3192–3195.[53]. Savaghebi, M.; Jalilian, A.; Vasquez, J.C.; Guerrero, J.M. Secondary control
scheme for voltage unbalance compensation in an islanded droop controlled microgrid.
IEEE Trans. Smart Grid 2012, 3, 797–807.
[54]. GB/T 19964; Technical Rule for PV Power Station Connected to Power Grid, China
Enterprise Standards, Technical Report. State Grid Corporation of China: Beijing,
China, 2012.
[55]. Wu, Y.K.; Lin, J.H.; Lin, H.J. Standards and guidelines for grid–connected
photovoltaic generation systems: A review and comparison. IEEE Trans. Ind. Appl.
2017, 53, 3205–3216.
[56]. Standard CSA C22.3 No. 9-08-R2015; Interconnection of Distributed Resources
and Electricity Supply Systems. Canadian Standards Association: Toronto, ON,
Canada, 2015. Available online: https://www.csagroup.org (accessed on 29 March
2020).
[57]. Ghassemi, F.; Perry, M. Review of Voltage Unbalance Limit in the GB Grid Code
CC.6.1.5 (b). Available online: https://www.nationalgrid.com (accessed on 11 March
2022).
[58]. Xu, L.; Miao, Z.; Fan, L.; Gurlaskie, G. Unbalance and Harmonic Mitigation using
Battery Inverts. In Proceedings of the IEEE 2015 North American Power Symposium
(NAPS), Charlotte, NC, USA, 4–6 October 2015.
[59]. Alwaz, N.; Raza, S.; Ali, S.; Bhatti, M.K.L.; Zahra, S. Harmonic power sharing and
power quality improvement of droop controller based low voltage islanded microgrid.
In Proceedings of the International Symposium on Recent Advances in Electrical
Engineering & Computer Sciences (RAEE), Islamabad, Pakistan, 28–29 August 2019;
pp. 1–6.
[60]. Cho, N.; Lee, H.; Bhat, R.; Heo, K. Analysis of harmonic hosting capacity of IEEE
Std. 519 with IEC 61000-3-6 in distribution systems. In Proceedings of the 2019 IEEE
PES GTD Grand International Conference and Exposition Asia (GTD Asia), Bangkok,
Thailand, 19–23 March 2019; pp. 730–734.
[61]. Bollen, M.; Zhong, J.; Zavoda, F.; Meyer, J.; McEachern, A.; Lopez, F.C. Power
Quality aspects of Smart Grids. Renew. Energy Power Qual. J. 2017, 1, 1061–1066.
[62]. Kaushal, J.; Basak, P. Power quality control based on voltage sag/swell,
unbalancing, frequency, THD and power factor using artificial neural network in PV
integrated AC microgrid. Sustain. Energy Grids Netw. 2020, 23, 100365.
[63]. Tenti, P.; Paredes, H.K.M.; Mattavelli, P. Conservative power theory, a framework
to approach control and accountability issues in smart microgrids. IEEE Trans. Power
Electron. 2022, 26, 664–673.
[64]. Belmili, H.; Haddadi, M.; Bacha, S.; Almi, M.F.; Bendib, B. Sizing stand-alone
photovoltaic–wind hybrid system: Techno-economic analysis and optimization.
Renew. Sustain. Energy Rev. 2014, 30, 821–832.