Marine Polysaccharides and their Potential in Agriculture
محورهای موضوعی : Journal of Crop Nutrition Science
1 - Associate professor, Food Science and Technology, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
کلید واژه: Biopolymer, Microalgae polysaccharides, Macroalgal polysaccharide, Plant resistance.,
چکیده مقاله :
Polysaccharides are polymers composed of monosaccharides linked by glycosidic bonds and are widely found in microorganisms, animals, algae, and plants. Some species of microalgae have naturally high carbohydrate concentrations. Polysaccharides derived from algae are safe, biocompatible, biodegradable and stable. These polymeric macromolecules have different complex biochemical structures according to the type of algae and microalgae. Microalgal polysaccharides are mainly composed of pentose and hexose monosaccharide subunits with various glycosidic linkages. Microalgae polysaccharides can be structural components of the cell wall, energy reserves or protective polysaccharides. Today, the industrial use of microalgae polysaccharides is increasing. These microorganisms and the compounds extracted from them have wide rheological and biological properties that make them a suitable option for use in food and agriculture industries. Therefore, microalgal polysaccharides are suitable alternatives for wide applications and the choice of microalgal species depends on the required functional activity. This paper aims to provide an overview to identify the potential of algal polysaccharides for agricultural applications.
Polysaccharides are polymers composed of monosaccharides linked by glycosidic bonds and are widely found in microorganisms, animals, algae, and plants. Some species of microalgae have naturally high carbohydrate concentrations. Polysaccharides derived from algae are safe, biocompatible, biodegradable and stable. These polymeric macromolecules have different complex biochemical structures according to the type of algae and microalgae. Microalgal polysaccharides are mainly composed of pentose and hexose monosaccharide subunits with various glycosidic linkages. Microalgae polysaccharides can be structural components of the cell wall, energy reserves or protective polysaccharides. Today, the industrial use of microalgae polysaccharides is increasing. These microorganisms and the compounds extracted from them have wide rheological and biological properties that make them a suitable option for use in food and agriculture industries. Therefore, microalgal polysaccharides are suitable alternatives for wide applications and the choice of microalgal species depends on the required functional activity. This paper aims to provide an overview to identify the potential of algal polysaccharides for agricultural applications.
Altaf, A., Z. Usmani, A.H. Dar, K.K. Dash. 2022. A comprehensive review of polysaccharide-based bionanocomposites for food packaging applications. Discover Food. https://doi.org/10.1007/s44187-022-00011-x.
Alvarez, A.L., S.L. Weyers, H.M. Goemann, B.M. Peyton, R.D. Gardner. 2021. Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture, Algal Research. 54: 102200.
Barber, T.M., S. Kabisch, A.F.H. Pfeiffer, M.O. Weickert. 2020. The health benefits of dietary fibre. Nutrients. 12: 3209.
Chanda, M., N. Merghoub, H. El Arroussi. 2019. Microalgae polysaccharides: the new sustainable bioactive products for the development of plant bio-stimulants? . World Journal of Microbiology and Biotechnology. 35(11): 177.
Chen, C. Y., X. Q. Zhao, H. W. Yen, S. H. Ho, C. L. Cheng, D. J. Lee, F. W. Bai, J. S. Chang. 2013. Microalgae-based carbohydrates for biofuel production, Biochemical Engineering Journal. 78: 1–10.
Chiellini, F., A. Morelli. 2011. Ulvan: A versatile platform of biomaterials from renewable resources. Biomaterials physics and Chemistry. 75–98.
Colusse, G. A., J. Carneiro, M.E.R. Duarte, J.C. de Carvalho, M.D. Noseda. 2022. Advances in microalgal cell wall polysaccharides: a review focused on structure, production, and biological application, Critical Reviews in Biotechnology. 42: 562–577.
Costa, J.A.V., B.C.B. Freitas, C.G. Cruz, J. Silveira, M.G. Morais. 2019. Potential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development, Journal of Environmental Science and Health, Part B. 54: 366–375.
Costa, J.A.V., B.F. Lucas, A.G.P. Alvarenga, J.B. Moreira, M.G. de Morais. 2021. Microalgae polysaccharides: an overview of production, characterization, and potential applications. Polysaccharides. 2: 759–772.
Dash, M., F. Chiellini, R.M. Ottenbrite, E. Chiellini, Chitosan. 2011. A versatile semi-synthetic polymer in biomedical applications, Progress in Polymer Science. 36(8): 981–1014.
De Carvalho Silvello, M.A., I.S. Gonçalves, S.P.H. Azambuja, S.S. Costa, P.G.P. Silva, L.O. Santos, R. Goldbeck. 2022. Microalgae-based carbohydrates: A green innovative source of bioenergy, Bioresource Technology. 344:126304.
De Jesus Raposo, M.F., R.M.S.C. De Morais, A.M.M.B. de Morais. 2013. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Marine Drugs. 11: 233–252.
De Morais, M. G., E.G. de Morais, B.B. Cardias, B. da Silva Vaz, J.B. Moreira, B.G. Mitchell, J.A.V. Costa. 2020. Microalgae as a source of sustainable biofuels. In: Recent Developments in Bioenergy Research, Elsevier. 253–271.
Delattre, C., G. Pierre, C. Laroche, P. Michaud. 2016. Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnology Advances. 34: 1159–1179.
Dheer, D., D. Arora, S. Jaglan, R.K. Rawal, R. Shankar. 2017. Polysaccharides based nanomaterials for targeted anti-cancer drug delivery. Journal of Drug Targeting. 25: 1–16.
Ghanavati, P.A.Z., M. Khodadadi, M. Tadayoni. 2022. Structural characterization and bioactive and functional properties of the Brown macroalgae (Sargassum illicifolium) polysaccharide. Journal of Food Measurement and Characterization. 16(2): 1–11.
Ghelichi, F., M. Tadayoni, L. Roomiani. 2023. Investigation of functional characteristics of water soluble polysaccharides and ethanolic extract from Plantago major. Journal of Food Research. 33(2): 57–73.
Gheorghita Puscaselu, R., A. Lobiuc, M. Dimian, M. Covasa. 2020. Alginate: From food industry to biomedical applications and management of metabolic disorders. Polymers. 12(10): 2417.
Habibi, R., M. Tadayoni, H. Mohammadpour. 2024. Evaluation of the functional properties of ethanolic and polysaccharide extracts of Spirulina platensis, Bioactive Carbohydrates and Dietary Fibre. 31: 100401.
Hifney, A.F., M.A. Fawzy, K.M. Abdel-Gawad, M. Gomaa. 2016. Industrial optimization of fucoidan extraction from Sargassum sp. and its potential antioxidant and emulsifying activities, Food Hydrocolloids. 54 : 77–88.
Hojjati, M., M. Noshad, R. Sorourian, H. Askari, S. Feghhi. 2022. Effect of gamma irradiation on structure, physicochemical and functional properties of bitter vetch (Vicia ervilia) seeds polysaccharides. Radiation Physics and Chemistry. 202: 110569.
Jindal, N., J.S. Khattar. 2018. Microbial polysaccharides in food industry. in: Biopolymers for Food Design, Elsevier. 95–123.
Kazachenko, A.S., F. Akman, Y.N. Malyar, N. Issaoui, N.Y. Vasilieva, A.A. Karacharov. 2021. Synthesis optimization, DFT and physicochemical study of chitosan sulfates, Journal of Molecular Structure. 1245: 131083. DOI: 10.1016/j.molstruc.2021.131083
Kumar, M., Y. Sun, R. Rathour, A. Pandey, I.S. Thakur, D.C.W. Tsang. 2020. Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges, Science of the Total Environment. 716: 137116.
Mak, W., N. Hamid, T. Liu, J. Lu, W.L. White. 2013. Fucoidan from New Zealand Undaria pinnatifida: Monthly variations and determination of antioxidant activities, Carbohydrate Polymers. 95: 606–614.
Maleki, N., L. Roomiani, M. Tadayoni. 2023. Microwave-assisted extraction optimization, antimicrobial and antioxidant properties of carrageenan from red algae (Gracilaria acerosa). Journal of Food Measurement and Characterization. 17 (2): 1156–1166. https://doi.org/10.1007/s11694-022-01682-x.
Markou, G., I. Angelidaki, D. Georgakakis. 2012. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels, Applied Microbiology and Biotechnology. 96 : 631–645.
Massironi, A., A. Morelli, D. Puppi, F. Chiellini. 2020. Renewable Polysaccharides Micro/Nanostructures for Food and Cosmetic Applications. Food and Cosmetic Applications. 25(21): 4886.
Medina-Cabrera, E.V., B. Rühmann, J. Schmid, V. Sieber. 2020. Optimization of growth and EPS production in two Porphyridum strains, Bioresource Technology Reports. 11: 100486.
Morais, M.G., T.D. Santos, L. Moraes, B.S. Vaz, E.G. Morais, J.A. V Costa. 2022. Exopolysaccharides from microalgae: Production in a biorefinery framework and potential applications, Bioresource Technology Reports. 18(1): 101006.
Morelli, A., D. Puppi, F. Chiellini. 2017. Perspectives on biomedical applications of ulvan. In book: Seaweed PolysaccharidesEdition: 1stChapter: 16Publisher: Elsevier.
Patel, A. K., A.P. Vadrale, R.R. Singhania, P. Michaud, A. Pandey, S.J. Chen, C.W. Chen, C.D. Dong. 2023. Algal polysaccharides: current status and future prospects. Phytochemistry Reviews. 22 : 1167–1196.
Rachidi, F., R. Benhima, L. Sbabou, H. El Arroussi. 2020. Microalgae polysaccharides bio-stimulating effect on tomato plants: Growth and metabolic distribution. Biotechnology Reports. 25: e00426.
Renuka, N., A. Guldhe, R. Prasanna, P. Singh, F. Bux. 2018. Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnology Advances. 36: 1255–1273.
Righini, H., E. Baraldi, Y. Garcia Fernández, A. Martel Quintana, R. Roberti. 2019. Different Antifungal Activity of Anabaena sp., Ecklonia sp., and Jania sp. against Botrytis cinerea, Marine Drugs. 17: 299.
Ruocco, N., S. Costantini, S. Guariniello, M. Costantini. 2016. Polysaccharides from the marine environment with pharmacological. Cosmeceutical and nutraceutical potential, Molecules. 21(5): 551.
Saravana, P.S., Y.J. Cho, Y.B. Park, H.C. Woo, B.S. Chun. 2020. Structural, antioxidant, and emulsifying activities of fucoidan from Saccharina japonica using pressurized liquid extraction, Carbohydrate Polymers. 153: 518–525. https://doi.org/10.1016/j.carbpol.2016.08.014.
Sasaki, M., A. Takagi, S. Ota, S. Kawano, D. Sasaki, M. Asayama. 2020. Coproduction of lipids and extracellular polysaccharides from the novel green alga Parachlorella sp. BX1. 5 depending on cultivation conditions. Biotechnology Reports. 25: e00392.
Seidi, F., M.K. Yazdi, M. Jouyandeh, S. Habibzadeh, M.T. Munir, H. Vahabi, B. Bagheri, N. Rabiee, P. Zarrintaj, M.R. Saeb. 2022. Crystalline polysaccharides: A review, Carbohydrate Polymers. 275: 118624.
Shahidi, F., J.K.V. Arachchi, Y. J. Jeon. 1999. Food applications of chitin and chitosans, Trends in Food Science & Technology. 10(2): 37–51.
Shao, P., J. Shao, Y. Jiang, P. Sun. 2016. Influences of Ulva fasciata polysaccharide on the rheology and stabilization of cinnamaldehyde emulsions, Carbohydrate Polymers. 135: 27–34.
Song, C., X. Han, Y. Qiu, Z. Liu, S. Li, Y. Kitamura. 2020. Microalgae carbon fixation integrated with organic matters recycling from soybean wastewater: Effect of pH on the performance of hybrid system. Chemosphere. 248: 126094. doi: 10.1016/j.chemosphere.2020.126094.
Sorourian, R., A. Khajehrahimi, M. Tadayoni, M.H. Azizi, M. Hojjati. 2022. Structural characterization and cytotoxic , ACE ‑ inhibitory and antioxidant activities of polysaccharide from Bitter vetch ( Vicia ervilia ) seeds. Journal of Food Measurement and Characterization. 16(5): 1–17. https://doi.org/10.1007/s11694-022-01512-0.
Sorourian, R., A. Khajehrahimi, M. Tadayoni, M.H. Azizi, M. Hojjati. 2020. Investigation of technological capabilities and bioactive properties of Typha stem polysaccharide. Innovative Food Technologies. 7(4): 567–580.
Sorourian, R., A.E. Khajehrahimi, M. Tadayoni, M.H. Azizi, M. Hojjati. 2020. Ultrasound-assisted extraction of polysaccharides from Typha domingensis: Structural characterization and functional properties, International Journal of Biological Macromolecules. 160: 758–768. https://doi.org/10.1016/j.ijbiomac.2020.05.226.
Stirk, W.A., J. van Staden. 2020. Potential of phytohormones as a strategy to improve microalgae productivity for biotechnological applications. Biotechnology Advances. 44 : 107612.
Sudha, P.N., T. Gomathi, P.A. Vinodhini, K. Nasreen. 2014. Marine carbohydrates of wastewater treatment, Advances in Food and Nutrition Research. 73: 103–143.
Tadayoni, M., F. Ghelichi, L. Roomiani. 2023. Investigation of functional characteristics of water soluble polysaccharides and ethanolic extract from Plantago major. Journal of Food Research. 33(2): 57–73.
Tadayoni, M., M. Sheikh-Zeinoddin, S. Soleimanian-Zad. 2015. Isolation of bioactive polysaccharide from acorn and evaluation of its functional properties, International Journal of Biological Macromolecules. 72: 179–184. https://doi.org/10.1016/j.ijbiomac.2014.08.015.
Torres, F.G., O.P. Troncoso, A. Pisani, F. Gatto, G. Bardi. 2019. Natural polysaccharide nanomaterials: an overview of their immunological properties. International Journal of Molecular Sciences. 20(20): 5092.
Wijesekara, I., R. Pangestuti, S. K. Kim. 2011. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydrate Polymers. 84: 14–21.
Yi, Z., Y. Su, S. Brynjolfsson, K. Olafsdóttir, W. Fu. 2021. Bioactive polysaccharides and their derivatives from microalgae: biosynthesis, applications, and challenges. Studies in Natural Products Chemistry. 71: 67–85.