Synthesis, Characterization, Antioxidant, Anti-fungal, and Antibacterial Activities of a New 1-Isopropyl-3,5-diphenyl-1,3,5-triazinane
محورهای موضوعی :Soria Zouchoune 1 , Leila Lefrada 2 , Nassiba Chafaa 3 , Latifa khattabi 4 , Ahcene Bouchemma 5
1 - Laboratory of Analytical Sciences Materials and Environment LSAME, Faculty of Exact Sciences and Sciences of Nature and Life, Larbi ben M'Hidi University, 04000 Oum El Bouaghi, Algeria
2 - Laboratory of Analytical Sciences Materials and Environment LSAME, Faculty of Exact Sciences and Sciences of Nature and Life, Larbi ben M'Hidi University, 04000 Oum El Bouaghi, Algeria
3 - Laboratory of Natural Substances, Bioactives Molecules and Biotechnological Application, Faculty of Exact Sciences and Sciences of Nature and Life, Larbi ben M'Hidi University, 04000 Oum El Bouaghi, Algeria
4 - Centre de Recherche en Biotechnologie, Ali Mendjli Nouvelle Ville UV 03, BP E73 Constantine, Algeria
5 - Laboratory of Applied Chemistry and Materials Technology LCATM, Faculty of Exact Sciences and Sciences of Nature and Life, Larbi ben M'Hidi University, 04000 Oum El Bouaghi, Algeria
کلید واژه: Synthesis, Antioxidant, Antimicrobial, Antifungal, 1, 3, 5-triazinane,
چکیده مقاله :
In this work, we present the green synthesis of a novel of 1-isopropyl-3,5-diphenyl-1,3,5-triazinane, It is made without a solvent, The multicomponent condensation reaction between isopropylamine, aniline, and formaline. The structures of this compound have been characterized by TLC, UV, IR, 1H NMR and 13C NMR. The antioxidant activity showed good antioxidant activity in ABTS, Phenanthroline. The antimicrobial activity of this novel molecule was tested against four bacterial and fungal strains using the disk diffusion method. The obtained results exhibited a high level of antibacterial and antifungal activity.
In this work, we present the green synthesis of a novel of 1-isopropyl-3,5-diphenyl-1,3,5-triazinane, It is made without a solvent, The multicomponent condensation reaction between isopropylamine, aniline, and formaline. The structures of this compound have been characterized by TLC, UV, IR, 1H NMR and 13C NMR. The antioxidant activity showed good antioxidant activity in ABTS, Phenanthroline. The antimicrobial activity of this novel molecule was tested against four bacterial and fungal strains using the disk diffusion method. The obtained results exhibited a high level of antibacterial and antifungal activity.
1. Brendel M., Sakhare P.R., Dahiya G., Subramanian P., Kaliappan K.P., 2020. Serendipitous Synthesis of Pyridoquinazolinones via an Oxidative C–C Bond Cleavage. The Journal of Organic Chemistry. 85(12), 8102-8110.
2. Zhang Y., Shao Y., Gong J., Zhu J., Cheng T., Chen J., 2019. Selenium-Catalyzed Oxidative C–H Amination of (E)-3-(Arylamino)-2-styrylquinazolin-4(3H)-ones: A Metal-Free Synthesis of 1,2-Diarylpyrazolo[5,1-b]quinazolin-9(1H)-ones. The Journal of Organic Chemistry. 84(5), 2798-2807.
3. Moussa A., Rahmati A., 2020. Synthesis and characterization of silicacoated Fe3O4 nanoparticle@silylpropyl triethylammonium polyoxometalate as an organic–inorganic hybrid heterogeneous catalyst for the one pot synthesis of tetrahydrobenzimidazo[2,1b]quinazolin1(2H) ones. Applied Organometallic Chemistry. 34(11), e5894. https://doi.org/10.1002/aoc.5894
4. Li Y., Qiu S., Fan L., Yin G., 2020. Cooperative Palladium and Copper Catalysis: One‐pot Synthesis of Diamino‐Substituted Naphthalenes from Aryl Halides, 1,4‐Bis(trimethylsilyl)butadiyne and Amines. Chem Cat Chem. 12(4), 1230-1235.
5. Feng Y., Zhang Z., Fu Q., Yao Q., Huang H., Shen J., Cui X., 2020. Ir-catalyzed regiospecific mono-sulfamidation of arylquinazolinones. Chinese Chemical Letters. 31(1), 58-60.
6. Strekowski L., Henary M., Mojzych M., 2008. Three Heterocyclic Rings Fused (6-6-6). Comprehensive Heterocyclic Chemistry. 1007-1035. doi.org/10.1016/b978-008044992-0.01119-6
7. Nikoofar K., Peyrovebaghi S. S., 2019. 1-Butyl-2-methylpipyridinium iodide ([BMPPY]I): novel ionic liquid for the synthesis of 6-hydroxy-6-(1H-indol-3-yl)indolo[2,1-b]quinazolin-12(6H)-ones under green solvent-free conditions. Research on Chemical Intermediates. 45(9), 4287-4298.
8. Miao J., Sang X., Wang Y., Deng S., Hao W., 2019. Synthesis of thiazolo[2,3-b]quinazoline derivatives via base-promoted cascade bicyclization of o-alkenylphenyl isothiocyanates with propargylamines. Organic & Biomolecular Chemistry. 17(29), 6994-6997.
9. Jia J., Zhang J., Zhou C., Zheng M., Feng D., Liang G., She Y., 2019. Extended π-conjugated quinazolinone derivatives with enhanced third-order nonlinear optical response. Dyes and Pigments. 166, 314-322.
10. Xie L., Lu C., Jing D., Ou X., Zheng K., 2019. Metal‐Free Synthesis of Polycyclic Quinazolinones Enabled by a (NH4)2S2O8‐Promoted Intramolecular Oxidative Cyclization. European Journal of Organic Chemistry. 2019(22), 3649-3653.
11. Bouchemma A., McCabe P., Sim G., 1990. Conformation of 1, 3, 5-tri-p-tolylmethyl-1, 3, 5-triazacyclohexane. Acta Crystallographica Section C: Crystal Structure Communications. 46(4), 671-674.
12. Khalaj A., Nakhjiri M., Negahbani A. S., Samadizadeh M., Firoozpour L., Rajabalian S., Samadi N., Faramarzi M. A., Adibpour N., Shafiee A., 2011. Discovery of a novel nitroimidazolyl–oxazolidinone hybrid with potent anti Gram-positive activity: Synthesis and antibacterial evaluation. Eur J Med Chem. 46(1), 65-70.
13. Pinkner J. S., Remaut H., Buelens F., Miller E., Åberg V., Pemberton N., Hedenström M., Larsson A., Seed P., Waksman G., Hultgren S. J., Almqvist F., 2006. Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria. Proceedings of the National Academy of Sciences. 103(47), 17897-17902.
14. Meka V. G., Pillai S. K., Sakoulas G., Wennersten C., Venkataraman L., DeGirolami P. C., Eliopoulos G. M., Moellering Jr R. C., Gold H. S., 2004. Linezolid resistance in sequential Staphylococcus aureus isolates associated with a T2500A mutation in the 23S rRNA gene and loss of a single copy of rRNA. The Journal of infectious diseases. 190(2), 311-317.
15. Chebbah M., Messai A., Bilge D., Bouchemma A., Parlak C., 2017. New unsymmetrically substituted triazacyclohexanes: Synthesis, characterisation, antimicrobial properties and DFT study. Journal of Molecular Structure. 1129, 152-159.
16. Lamraoui H., Messai A., Bilge D., Bilge M., Bouchemma A., Parlak C., 2017. A comparative study of two novel unsymmetrically substituted triazacyclohexanes. Journal of Molecular Structure. 1138, 64-70.
17. Lefrada L., Köhn R., Malki S., Mazouz W., Bouchemma A., Hadjem M., 2017. Synthesis and antimicrobial activity of 1,3-bis-butyl-5-(4-iodophenyl)-1,3,5-triazacyclohexane. European Journal of Chemistry. 8(1), 82-84.
18. Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C., 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine. 26(9-10), 1231-1237.
19. Szydlowskaczerniak A., Dianoczki C., Recseg K., Karlovits G., Szlyk E., 2008. Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta. 76(4), 899-905.
20. Medini F., Fellah H., Ksouri R., Abdelly C., 2018. Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum. Journal of Taibah University for Science. 8(3), 216-224.
21. Balouiri M., Sadiki M., Ibnsouda S. K., 2016. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis. 6(2), 71-79.
22. Bauer A., 1996. Antibiotic susceptibility testing by a standardized single disc method. Am Jof Clinc. Path. 45, 149-158.