تولید فیلم زیستتخریبپذیر بر پایه نانوذرات اکسید روی-پلی لاکتیک اسید– نشاسته و ارزیابی خواص آن
محورهای موضوعی : کاربرد شیمی در محیط زیستهادی اسلامی 1 , هدا جعفری زاده مالمیری 2 , حسین علی خنکدار 3
1 - گروه مهندسی شیمی، واحد تهران شمال، دانشگاه آزاد اسلامی،تهران،ایران
2 - Department of Chemical Engineering, Sahand University of Technology, Tabriz, Iran
3 - پژوهشکده فرآیند، پژوهشگاه پلیمر و پتروشیمی ایران، تهران، ایران
کلید واژه: فیلمهای زیستتخریبپذیر, پلی لاکتیک اسید, نشاسته, نانوذرات اکسید روی ,
چکیده مقاله :
امروزه توسعه و ساخت فیلمهای زیستتخریبپذیر با استفاده از ترکیبات طبیعی، بهعنوان جایگزینی مناسب برای پلاستیکهای مصنوعی میباشد. فیلمهای زیستتخریبپذیر حاوی پلی لاکتیک اسید (PLA) و نشاسته (Starch) در سه نسبت وزنی 10/90، 20/80 و 30/70 تهیه و با استفاده از تکنیکهای طیفسنج مادونقرمز تبدیل فوریه ، پراش اشعه ایکس، گرماوزن سنجی ، میکروسکوپ الکترونی روبشی - عبوری و طیف سنجی پراش انرژی پرتو ایکس مورد ارزیابی قرار گرفتند. نتایج نشان داد که بیشترین مقدار نشاسته (30 درصد) منجر به شکنندگی و استحکام کمتر لایههای Starch/PLA میگردد. همچنین افزودن 5 درصد آنیدرید مالئیک (MA) و نانوذرات اکسیدروی (ZnONPs) به فیلم، چسبندگی بین دوفاز را افزایش داد. علاوه بر این، با افزایش مقدار ZnONPs از 1 به 5 درصد در فرمولاسیون فیلم، ساختار آمورف فیلم به طور معنی داری(0.05P<) افزایش یافته و فیلم های حاوی 1 و 5 درصد ZnONPs دارای اندازه های کریستالی 14/34و 4/28 نانومتر میباشند. نتایج نشان میدهد که با افزایش مقدار ZnONPs در فیلم از 1 به 5 درصد، مقاومت حرارتی آن افزایش و وزن فیلمها از 13/95 به 19/88 درصد کاهش یافت. همچنین درصد تخریب فیلم ها پس از یک ماه از 3/77 به 39/69 درصد کاهش یافت. همچنین نتایج نشان داد که فیلم های بر پایه MA/ZnONPs/Starch/PLA با نسبت 5/5/20/80، دارای کربن، اکسیژن و روی به ترتیب با درصد وزنی 3/70، 1/25 و 6/4 میباشد.
Biodegradable films containing poly (lactic acid) (PLA) and starch with three ratios of 90/10, 80/20 and 70/ 30 were prepared and analyzed using FT-IR, FESEM, XRD, EDS and TGA. Results of FT-IR and FESEM indicated that highest amount of starch (30 %) was lead to fragile and less strength of PLA/Starch films. Results indicated that by addition of 5% maleic anhydride (MA) and ZnO NPs to the film formulation, adhesion between the two phases was significantly (p < 0.05) increased Furthermore, by increasing amount of ZnO NPs from 1 to 5% into the film formulation, amorphous structure of the film was significantly (p < 0.05) increased, and the films containing 1 and 5% ZnO NPs had crystal size of 34.14 and 28.4 nm, respectively. Results indicated that by increasing the amount of ZnO NPs in the film formulation from 1 to 5 %, its thermal resistance increased and weight loss decreased from 95.13 to 88.19 %, respectively. Furthermore, degradation percentage of the films decreased from 77.3 to 69.39%, respectively, after one month. Results indicated that film, based on PLA/Starch/MA/ ZnO NPs with ratio of 80/20/5/5 had carbon, oxygen and Zinc with weight percentage of 70.3, 25.1 and 4.6%, respectively.
1. Akshaykranth, A., Jayarambabu, N., Venkatappa Rao, T., Rakesh Kumar, R., Srinivasa Rao, L., 2023, Antibacterial activity study of ZnO incorporated biodegradable poly (lactic acid) films for food packaging applications. Polymer Bulletin, 80(2): p. 1369-1384.
2. Smaoui, S., Chérif, I., Hlima, H.B., Khan, M.U., Rebezov, M., Thiruvengadam, M., Sarkar, T., Shariati, M.A., Lorenzo, J.M., 2023, Zinc oxide nanoparticles in meat packaging: A systematic review of recent literature. Food Packaging and Shelf Life, 36: p. 101045
. 3. Grande-Tovar, C.D., Castro, J.I., Valencia Llano, C.H., Tenorio, D.L., Saavedra, M., Zapata, P.A., Chaur, M.N., 2022, Polycaprolactone (PCL)-Polylactic Acid (PLA)-Glycerol (Gly) Composites Incorporated with Zinc Oxide Nanoparticles (ZnO-NPs) and Tea Tree Essential Oil (TTEO) for Tissue Engineering Applications. Pharmaceutics, 15(1): p. 43
. 4. Sharifi, A., Mousavi, S.R., Ghanemi, R., Mohtaramzadeh, Z., Asheghi, R., Mohammadi-Roshandeh, J., Khonakdar, H.A., Hemmati, F., 2023, Extruded biocomposite films based on poly (lactic acid)/chemically-modified agricultural waste: tailoring interface to enhance performance. International Journal of Biological Macromolecules, 233: p. 123517
. 5. Soleimanpour, A., Khonakdar, H., Mousavi, S.R., Hemmati, F., Arjmand, M., Arnhold, K., Reuter, U., Khonakdar, H.A., 2022, Dynamic crystallization kinetics and morphology of carbonaceous nanofillers-reinforced poly (lactic acid) foams. Thermochimica Acta, 716: p. 179308
. 6. Jalalvandi, E., Majid, R.A., Ghanbari, T., Ilbeygi, H., 2015, Effects of montmorillonite (MMT) on morphological, tensile, physical barrier properties and biodegradability of polylactic acid/starch/MMT nanocomposites. Journal of Thermoplastic Composite Materials, 28: p. 496-509
7. Mokhtari Aghdami, R., Mousavi, S.R., Estaji, S., Dermeni, R.K., Khonakdar, H.A., Shakeri, A., 2022, Evaluating the mechanical, thermal, and antibacterial properties of poly (lactic acid)/silicone rubber blends reinforced with (3‐aminopropyl) triethoxysilane‐functionalized titanium dioxide nanoparticles. Polymer Composites, 43(7): p. 4165-4178
. 8. Paydayesh, A., Mousavi, S.R., Estaji, S., Khonakdar, H.A., Nozarinya, M.A., 2022, Functionalized graphene nanoplatelets/poly (lactic acid)/chitosan nanocomposites: Mechanical, biodegradability, and electrical conductivity properties. Polymer Composites, 43(1): p. 411-421
. 9. Momeni, S., Rezvani Ghomi, E., Shakiba, M., Shafiei-Navid, S., Abdouss, M., Bigham, A., Ramakrishna, S., 2021, The effect of poly (Ethylene glycol) emulation on the degradation of pla/starch composites. Polymers, 13: p. 1019
. 10. Sun, Y., Lee, D., Wang, Y., Li, S., Ying, J., Liu, X., Xu, G., Gwon, J., Wu, Q., 2021, Thermal decomposition behavior of 3D printing filaments made of wood‐filled polylactic acid/starch blend. Journal of Applied Polymer Science, 138: p. 49944
. 11. Muller, J., González-Martínez, C., Chiralt, A., 2017, Poly (lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. European Polymer Journal, 95: p. 56-70
. 12. Mousavi-Kouhi, S.M., Beyk-Khormizi, A., Amiri, M.S., Mashreghi, M., Yazdi, M.E.T., 2021, Silver-zinc oxide nanocomposite: From synthesis to antimicrobial and anticancer properties. Ceramics International, 47(15): p. 21490-21497
. 13. Umoren, S.A., Obot, I.B., Gasem, Z.M., 2014, Green synthesis and characterization of silver nanoparticles using red apple (Malus domestica) fruit extract at room temperature. Journal of Materials and Environmental Science, 5: p. 907-914
. 14. Wu, D., Hakkarainen, M., 2015, Recycling PLA to multifunctional oligomeric compatibilizers for PLA/starch composites. European Polymer Journal, 64: p. 126-137
. 15. Wang, P., Xiong, Z., Xiong, H., Cai, J., 2020, Synergistic effects of modified TiO2/multifunctionalized graphene oxide nanosheets as functional hybrid nanofiller in enhancing the interface compatibility of PLA/starch nanocomposites. Journal of Applied Polymer Science, 137(37): p. 49094
. 16. Arshian, M., Estaji, S., Tayouri, M.I., Mousavi, S.R., Shojaei, S., Khonakdar, H.A., 2023, Poly (lactic acid) films reinforced with hybrid zinc oxide-polyhedral oligomeric silsesquioxane nanoparticles: Morphological, mechanical, and antibacterial properties. Polymers for Advanced Technologies, 34(3): p. 985-997
. 17. Eslami, H., Jafarizadeh-Malmiri, H., Khonakdar, H.A., 2022, Effectiveness of different accelerated green synthesis methods in zinc oxide nanoparticles using red pepper extract: Synthesis and characterization. Green Processing and Synthesis, 11: p. 686-696
. 18. Anzabi, Y., 2018, Biosynthesis of ZnO nanoparticles using barberry (Berberis vulgaris) extract and assessment of their physicochemical properties and antibacterial activities. Green Processing and Synthesis, 7: p. 114–121
. 19. Rajakumar, G., Thiruvengadam, M., Mydhili, G., Gomathi, T., Chung, I.M., 2018, Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioprocess and Biosystems Engineering, 41: p. 21–30
. 20. Fereshteh, Z., Fathi, M., Bagri, A., Boccaccini, A.R., 2016, Preparation and characterization of aligned porous PCL/zein scaffolds as drug delivery systems via improved unidirectional freeze-drying method. Materials Science and Engineering: C, 68: p. 613-622
. 21. Rahman, M.M., Islam, M.S. and Li, G.S., 2018, Development of PLA/CS/ZnO nanocomposites and optimization its mechanical, thermal and water absorption properties. Polymer Testing, 68: p.302-308
. 22. Bulatović, V.O., Mandić, V., Kučić Grgić, D. and Ivančić, A., 2021, Biodegradable polymer blends based on thermoplastic starch. Journal of Polymers and the Environment, 29(2): p.492-508
. 23. Chauhan, S., Raghu, N. and Raj, A., 2021, Effect of maleic anhydride grafted polylactic acid concentration on mechanical and thermal properties of thermoplasticized starch filled polylactic acid blends. Polymers and Polymer Composites, 29(9_suppl): p.S400-S410
. 24. Martinez Villadiego, K., Arias Tapia, M.J., Useche, J., Escobar Macías, D., 2022, Thermoplastic starch (TPS)/polylactic acid (PLA) blending methodologies: a review. Journal of Polymers and the Environment, 30(1): p.75-91
. 25. Oshani, B.N., Davachi, S.M., Hejazi, I., Seyfi, J., Khonakdar, H.A. and Abbaspourrad, A., 2019, Enhanced compatibility of starch with poly (lactic acid) and poly (ɛ-caprolactone) by incorporation of POSS nanoparticles: Study on thermal properties. International journal of biological macromolecules, 141: p.578-584
. 26. Asrofi, M., Dwilaksana, D., Abral, H., Fajrul, R., 2019, Tensile, thermal, and moisture absorption properties of polyvinyl alcohol (PVA)/bengkuang (pachyrhizuserosus) starch blend films. Material Science Research India, 16: p. 70-75
. 27. Kaur, K., Jindal, R., Maiti, M., Mahajan, S., 2019, Studies on the properties and biodegradability of PVA/Trapa natans starch (N-st) composite films and PVA/N-st-g-poly (EMA) composite films. International journal of biological macromolecules, 123: p. 826-836
. 28. Suresh, J., Pradheesh, G., Alexramani, V., Sundrarajan, M., Hong, S.I., 2018, Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9(1): p. 015008
. 29. Nagaraju, G., Prashanth, S.A., Shastri, M., Yathish, K.V., Anupama, C., Rangappa, D., 2017, Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag–ZnO nanomaterial. Materials Research Bulletin, 94: p. 54-63
. 30. Brito, L.M., Chávez, F.V., Tavares, M.I.B., Sebastião, P.J., 2013, Molecular Dynamic Evaluation of starch-PLA blends nanocomposite with organoclay by proton NMR relaxometry. Polymer Testing, 32: p. 1181-1185
. 31. Hao, L., Hu, Y., Zhang, Y., Wei, W., Hou, X., Guo, Y., Jiang, D., 2018, Enhancing the mechanical performance of poly (ether ether ketone)/zinc oxide nanocomposites to provide promising biomaterials for trauma and orthopedic implants. RSC Advances, 8: p. 27304-27317
. 32. Alikarami, N., Abrisham, M., Huang, X., Panahi-Sarmad, M., Zhang, K., Dong, K., Xiao, X., 2022, Compatibilization of PLA grafted maleic anhydrate through blending of thermoplastic 137 starch (TPS) and nanoclay nanocomposites for the reduction of gas permeability. International Journal of Smart and Nano Materials, 13: p. 130-151
. 33. Brito, L.M., Tavares, M.I.B., 2022, PLA-Starch Microparticles Containing Clays Focusing Controlled Release of Rifampicin. Mater Sci and Appl, 13: p. 441-452
. 34. Xiang, S., Feng, L., Bian, X., Li, G., Chen, X., 2020, Evaluation of PLA content in PLA/PBAT blends using TGA. Polymer Testing, 81: p. 106211
. 35. Mofokeng, J.P., Luyt, A.S., Tábi, T., Kovács, J., 2012, Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. Journal of Thermoplastic Composite Materials, 25(8): p. 927-948
. 36. Kaur, H., Rathore, A., Raju, S., 2014, A study on ZnO nanoparticles catalyzed ring opening polymerization of L-lactide. Journal of Polymer Research, 21: p. 1-10
. 37. Haeldermans, T., Samyn, P., Cardinaels, R., Vandamme, D., Vanreppelen, K., Cuypers, A., Schreurs, S., 2021, Poly (lactic acid) biocomposites containing biochar particles: effects of fillers and plasticizers on crystallization and thermal properties. Express Polymer Letters, 15: p. 343-360
. 38. Eshagh, S., Abbaspour-Fard, M.H., Hosseini, F., Tabasizadeh, M., 2019, Effect of Zinc Oxide Nanoparticles on Mechanical, Thermal and Biodegradability of Gelatin-Based Biocomposite Properties Films. Iranian Journal of Polymer Science and Technology, 32: p. 411-426
. 39. Neto, B.A.D.M., Junior, C.C.M.F., Silva, E.G.P.D., Franco, M., Santos Reis N.D., Ferreira Bonomo, R.C., Pontes, K.V., 2017, Biodegradable thermoplastic starch of peach palm (Bactris gasipaes kunth) fruit: Production and characterisation. International journal of food properties, 20(sup3): p. S2429-S2440
. 40. Heydarian, A., Mousavi, S.M., Vakilchap, F., Baniasadi, M., 2018, Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries. Journal of Power Sources, 378: p. 19-30
. 41. Mangaraj, S., Thakur, R.R. and Yadav, A., 2022, Development and characterization of PLA and Cassava starch‐based novel biodegradable film used for food packaging application. Journal of Food Processing and Preservation, 46(9): p.e16314
. 42. Whulanza, Y., Azadi, A., Supriadi, S., Rahman, S.F., Chalid, M., Irsyad, M., Nadhif, M.H. and Kreshanti, P., 2022, Tailoring mechanical properties and degradation rate of maxillofacial implant based on sago starch/polylactid acid blend. Heliyon, 8(1): p.e08600
.