مدیریت انرژی ریزشبکه ها با استفاده از جبرانکننده ها، ذخیرهسازها، پاسخ تقاضا و ادغام انرژیهای تجدیدپذیر
محورهای موضوعی : مهندسی برق قدرتحمید همتیان 1 , محمد طلوع عسکری 2 , میثم امیراحمدی 3 , محمود سمیعی مقدم 4 , مجید بابایی نیک 5
1 - گروه مهندسی برق، واحد سمنان، دانشگاه آزاد اسلامی ، سمنان، ایران
2 - گروه مهندسي برق، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ايران
3 - گروه مهندسی برق، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ایران
4 - گروه مهندسی برق، واحد دامغان، دانشگاه آزاد اسلامی، دامغان، ایران
5 - گروه مهندسی برق، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ایران
کلید واژه: ریزشبکه, باتری, مدیریت سمت تقاضا, منابع انرژی تجدیدپذیر,
چکیده مقاله :
این مقاله به بررسی چالشهای مدیریت انرژی در ریزشبکه میپردازد، با توجه به عدم قطعیتهای مرتبط با منابع تجدیدپذیر، تقاضای پویا و وجود دستگاههای متنوع مانند باتریها، منابع تولید توزیعشده، و وسایل نقلیه الکتریکی. در این مقاله، یک مدل بهینهسازی پیچیده معرفی شده است که برای عملیات ریزشبکه طراحی شده است. این مدل به کاهش چالشهای ادغام واحدهای تولید الکترونیکی قدرت، مدیریت تقاضا در ریزشبکهها، و ادغام منابع انرژی تجدیدپذیر در مقیاس کوچک تمرکز دارد. هدف این مدل کاهش هزینههای مختلف مرتبط با تلفات انرژی، خرید برق، کاهش بار، عملیات منابع تولید پراکنده، و هزینه باتری در 24 ساعت است. شبیهسازیهای انجامشده بر روی یک سیستم آزمایشی نشان میدهد که مدل پیشنهادی موثر بوده و تا 20 درصد کاهش هزینه عملیاتی ریزشبکه را داراست. این رویکرد یک چارچوب موثر برای تقویت انعطافپذیری و افزایش کارایی مدیریت انرژی ریزشبکه فراهم میکند، و یافتهها نشان میدهند که با حداقل حاشیه 8 درصد، بهتر از روشهای مقایسهای عمل میکند و کارایی آن در افزایش شاخصهای حیاتی در سیستم ریزشبکه را نشان میدهد.
This article examines the challenges of energy management in microgrids, considering the uncertainties associated with renewable energy sources, dynamic demand, and the presence of various devices such as batteries, distributed generation sources, and electric vehicles. The article introduces a complex optimization model designed for microgrid operations. This model focuses on mitigating the challenges of integrating power electronic generation units, managing demand within microgrids, and incorporating small-scale renewable energy sources. The goal of this model is to minimize various costs associated with energy losses, electricity purchases, load reduction, distributed generation operations, and battery costs over a 24-hour period. Simulations conducted on a test system demonstrate that the proposed model is effective, achieving up to a 20% reduction in microgrid operational costs. This approach provides an effective framework for enhancing the flexibility and efficiency of microgrid energy management, and the findings indicate that it outperforms comparative methods by a margin of at least 8%, demonstrating its effectiveness in improving critical indices in the microgrid system.
[1] V. Gali, P. K. Jamwal, N. Gupta, A. Kumar, “An adaptive dynamic power management approach for enhancing operation of microgrid with grid ancillary services,” Renewable Energy, Volume 219, Part 1, 119413, 2023.
[2] F. N. Budiman, M. A.M. Ramli, H. R.E.H. Bouchekara, A. H. Milyani, “Optimal scheduling of a microgrid with power quality constraints based on demand side management under grid-connected and islanding operations,” International Journal of Electrical Power & Energy Systems, Volume 155, Part B, 109650, 2024.
[3] V. Shahbazbegian, M. Shafie-khah, H. Laaksonen, G. Strbac, H. Ameli, “Resilience-oriented operation of microgrids in the presence of power-to-hydrogen systems,” Applied Energy, Volume 348, 121429, 2023.
[4] X. Chen, J. Zhai, Y. Jiang, C. Ni, S. Wang, P. Nimmegeers, “Decentralized coordination between active distribution network and multi-microgrids through a fast decentralized adjustable robust operation framework,” Sustainable Energy, Grids and Networks, Volume 34, 101068, 2023.
[5] Özge Erol, Ümmühan Başaran Filik, “A Stackelberg game-based dynamic pricing and robust optimization strategy for microgrid operations,” International Journal of Electrical Power & Energy Systems, Volume 155, Part B, 109574, 2024.
[6] B. Cortés-Caicedo, L. F. Grisales-Noreña, O. D. Montoya, R. I. Bolaños, “Optimization of BESS placement, technology selection, and operation in microgrids for minimizing energy losses and CO2 emissions: A hybrid approach,” Journal of Energy Storage, Volume 73, Part B, 108975, 2023.
[7] Z. Li, B. Zhao, Z. Chen, C. Ni, J. Yan, X. Yan, X. Bian, N. Liu, “Low-carbon operation method of microgrid considering carbon emission quota trading,” Energy Reports, Volume 9, Supplement 2, Pages 379-387, 2023.
[8] M. H. Parvaneh, M. H. Moradi, S. M. Azimi, “The advantages of capacitor bank placement and demand response program execution on the optimal operation of isolated microgrids,” Electric Power Systems Research, Volume 220, 109345, 2023.
[9] Y. Li, X. Zhang, Y. Wang, X. Qiao, S. Jiao, Y. Cao, Y. Xu, M. Shahidehpour, Z. Shan, “Carbon-oriented optimal operation strategy based on Stackelberg game for multiple integrated energy microgrids,” Electric Power Systems Research, Volume 224, 109778, 2023.
[10] Z. Guo, W. Wei, J. Bai, S. Mei, “Long-term operation of isolated microgrids with renewables and hybrid seasonal-battery storage,” Applied Energy, 121628, Volume 349, 2023.
[11] J. Xu, Y. Yi, “Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach,” Energy, Volume 263, Part B, 125712, 2023.
[12] Z. Shi, T. Zhang, Y. Liu, Y. Feng, R. Wang, S. Huang, “Optimal design and operation of islanded multi-microgrid system with distributionally robust optimization,” Electric Power Systems Research, Volume 221, 109437, 2023.
[13] D. Krupenev, N. Komendantova, D. Boyarkin, D. Iakubovskii, “Digital platform of reliability management systems for operation of microgrids,” Energy Reports, Volume 10, Pages 2486-2495, 2023.
[14] Z. Liang, Z. Dong, C. Li, C. Wu and H. Chen, “A Data-Driven Convex Model for Hybrid Microgrid Operation With Bidirectional Converters,” IEEE Transactions on Smart Grid, vol. 14, no. 2, pp. 1313-1316, March 2023.
[15] O. M. Adeyanju, P. Siano and L. N. Canha, “Dedicated Microgrid Planning and Operation Approach for Distribution Network Support With Pumped-Hydro Storage,” IEEE Transactions on Industrial Informatics, vol. 19, no. 7, pp. 8229-8241, July 2023.
[16] L. Tang, E. Shang, X. Chen, L. Li and S. Zou, “Optimization Effect Analysis of ACM-PSO Integrating Individual Adjustment and Cross Operation on Microgrid DG Technology,” IEEE Access, vol. 11, pp. 59954-59967, 2023.
[17] Y. Wang et al., “Optimal Operation Strategy for Multi-Energy Microgrid Participating in Auxiliary Service,” IEEE Transactions on Smart Grid, vol. 14, no. 5, pp. 3523-3534, Sept. 2023.
[18] D. A. Quijano, M. Vahid-Ghavidel, M. S. Javadi, A. Padilha-Feltrin and J. P. S. Catalão, “A Price-Based Strategy to Coordinate Electric Springs for Demand Side Management in Microgrids,” IEEE Transactions on Smart Grid, vol. 14, no. 1, pp. 400-412, Jan. 2023.
[19] G. Abdulnasser, A. Ali, M. F. Shaaban and E. E. M. Mohamed, “Optimizing the Operation and Coordination of Multi-Carrier Energy Systems in Smart Microgrids Using a Stochastic Approach,” IEEE Access, vol. 11, pp. 58470-58490, 2023.
[20] L. Ahmethodžić, M. Musić and S. Huseinbegović, “Microgrid Energy Management: Classification, Review and Challenges,” CSEE Journal of Power and Energy Systems, vol. 9, no. 4, pp. 1425-1438, July 2023.
[21] B. Zeng and L. Zhao, “Solving two-stage robust optimization problems using a column-and-constraint generation method,” Operations Research Letters, vol. 41, pp. 457-461, 2013.
[22] S. Dehghan, N. Amjady, and A. Kazemi, “Two-Stage Robust Generation Expansion Planning: A Mixed Integer Linear Programming Model,” IEEE Transactions on Power Systems, vol. 29, pp. 584-597, 2014.
[23] Y. Guo and C. Zhao, “Islanding-aware robust energy management for microgrids,” IEEE Transactions on Smart Grid, vol. 9, pp. 1301-1309, 2016.
[24] Y. Qu, H. Wang, J. Wu, X. Yang, H. Yin, L. Zhou, “Robust optimization of train timetable and energy efficiency in urban rail transit: A two-stage approach,” Computers & Industrial Engineering, Volume 146, 106594, 2020.
[25] H.J. Kim, M.K. Kim, J.W. Lee, “A two-stage stochastic p-robust optimal energy trading management in microgrid operation considering uncertainty with hybrid demand response,” International Journal of Electrical Power & Energy Systems, Volume 124, 106422, 2021.