Investigation ZnO and Different Additives on Ultrasonic Degradation of Bisphenol A
محورهای موضوعی :Shaharul Islam 1 , Samiul Bari Avick 2 , M. Shamsul Alam 3 , Helal Uddin 4
1 - Department of Chemistry, Bangladesh Army University of Engineering & Technology (BAUET), Qadirabad Cantonment, Natore-6431, Bangladesh
2 - Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, Islamic University, Kushtia-7003, Bangladesh
3 - Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, Islamic University, Kushtia-7003, Bangladesh
4 - Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, Islamic University, Kushtia-7003, Bangladesh
کلید واژه: Bisphenol A, Ultrasound, Degradation, Nanoparticles, Additives,
چکیده مقاله :
Degradation of bisphenol A (BPA) or 4, 4'-isopropylidene diphenol, a common endocrine disruptor was carried out by ultrasound irradiation at 40 kHz in the presence of ZnO nanoparticles, NaCl, Na2SO4, H2O2, and CCl4. The BPA degradation is carried out at pH 6.3(stock solution), pH 2, and 8 in the presence and absence of the aforesaid additives at different concentrations. The degradation behavior of BPA was measured through the UV-visible spectrophotometer. The ZnO nanoparticle was synthesized by the Sol-Gel method and characterized by SEM, EDX, and XRD. The experimental result shows that the rate of degradation increased with the addition of additives. The synthesized ZnO nanoparticle drastically favored the degradation rate of BPA. The BPA degradation rate is also improved in acidic conditions compared to the basic conditions. Therefore, the BPA can be efficiently removed from the aqueous medium using ultrasound irradiation in the presence of ZnO nanoparticles, NaCl, Na2SO4, H2O2, and CCl4.
Degradation of bisphenol A (BPA) or 4, 4'-isopropylidene diphenol, a common endocrine disruptor was carried out by ultrasound irradiation at 40 kHz in the presence of ZnO nanoparticles, NaCl, Na2SO4, H2O2, and CCl4. The BPA degradation is carried out at pH 6.3(stock solution), pH 2, and 8 in the presence and absence of the aforesaid additives at different concentrations. The degradation behavior of BPA was measured through the UV-visible spectrophotometer. The ZnO nanoparticle was synthesized by the Sol-Gel method and characterized by SEM, EDX, and XRD. The experimental result shows that the rate of degradation increased with the addition of additives. The synthesized ZnO nanoparticle drastically favored the degradation rate of BPA. The BPA degradation rate is also improved in acidic conditions compared to the basic conditions. Therefore, the BPA can be efficiently removed from the aqueous medium using ultrasound irradiation in the presence of ZnO nanoparticles, NaCl, Na2SO4, H2O2, and CCl4.
1. Kitajima M., Hatanaka S.I., Hayashi S., 2006. Mechanism of O2-accelerated sonolysis of bisphenol A. Ultrasonics. 44, e371- e373.
2. Krishnan A.V., Starhis P., Permuth S.F., Tokes L., Fledman D., 1993. Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinol. 132(6), 2279-86.
3. Brostons J.A., Olea- Serrano M.F., Villalobos M., Pedraza V., Olea N., 1995. Xenoestrogens released from lacquer coatings in food cans. Environ. Health Perspect. 103(6), 608-612.
4. Suarez S., Sueiro R.A., Garrido J., 2000. Genotoxicity of the coating lacquer on food cans, bisphenol A diglycidyl ether -BADGE, its hydrolysis products and a chlorohydrin of BADGE. Mutat Res. 470, 221-228.
5. Loganathan B.G., Lam P.K.S. Global Contamination Trends of Persistent Organic Chemicals, 1st ed., CRC Press: USA, 2012. pp. 3-32.
6. González-Mille D.J., Ilizaliturri-Hernández C.A., Espinosa-Reyes G., Cruz-Santiago O., Cuevas-Díaz, M.D.C.; Martín Del Campo C.C., Flores-Ramírez, 2019. R. DNA Damage in different wildlife species exposed to persistent organic pollutants (POPs) from the delta of the Coatzacoalcos Ver, Mexico. Ecotoxicol Environ Saf. 180, 403-411.
7. Ghassabian A., Vandenberg L., Kannan K., Trasande L., 2022. Endocrine-disrupting chemicals and child health. Annu. Rev Pharmacol Toxicol. 62, 573-594.
8. Mahmad A., Zango Z.U., Noh T.U., Usman F., Aldaghiri O.A., Ibnaouf K.H., Shaharun M.S., 2023. Response surface methodology and artificial neural network for prediction and validation of bisphenol a adsorption onto zeolite imidazole framework. Groundw. Sustain Dev. 21, 100925.
9. Preethi S., Sandhya K., Lebonah D.E., Prasad Ch.V., Sreedevi B., Chandrasekhar K., Kumari J.P., 2014. Toxicity of bisphenol a on humans: a review. Int Lett Nat Sci. 27, 32-46.
10. Suresh S., Singh S.A., Vellapandian C., 2022. Bisphenol A exposure links to exacerbation of memory and cognitive impairment: A systematic review of the literature. Neurosci Biobehav Rev. 143, 104939.
11. Roy D., Palagat M., Chen C.W., Thomas R.D., Colerangle J., Atkinson A., Yan Z.J., 1997. Biochemical And Molecular Changes At The Cellular Level In Response To Exposure To Environmental Estrogen-Like Chemicals. J Toxicol and Environ Health. 50(1), 1-30.
12. Matsumoto G., Ishiwatari R., and Hanya T., 1977. Gas chromatographic-mass spectrometric identification of phenols and aromatic acids in river waters. Water Res. 11(8), 693-698.
13. Matsumoto G., 1982, Comparative study on organic constituents in polluted and unpolluted inland aquatic environments—III: Phenols and aromatic acids in polluted and unpolluted waters. Water Res. 16(5), 551-557.
14. Flint E. B., Suslick K. S., 1991. The Temperature of Cavitation. Science. 253(5026), 1397-1399.
15. Suslick K.S., Hammerton D.A., 1986. The Site of Sonochemical Reactions, IEEE Trans. 2(33), 143.
16. Mason T.J., Lorimer J.P., Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry, Halsted Press (Wiley): Chichester, U. K., 1988.
17. Adewuyi Y.G., Appaw C., 2002. Sonochemical Oxidation of Carbon Disulfide in Aqueous Solutions: Reaction Kinetics and Pathways. Ind Eng Chem Res. 41(20), 4957-4964.
18. Appaw C., Adewuyi Y.G., 2002. Destruction of carbon disulfide in aqueous solutions by sonochemical oxidation. J Haz Mat. 90(3), 237-249.
19. Ley S.V., Low C.M.R., Ultrasound in Synthesis; Springer-Verlag (Berlin, New York), 1989.
20. Lu Y., Weavers L.K., 2002. Sonochemical desorption and destruction of 4 chlorobiphenyl from synthetic sediments. Environ Sci Technol. 36(2), 232-237.
21. Hua I., Hoffman M. R., 1997. Optimization of Ultrasonic Irradiation as an Advanced Oxidation Technology. Environ Sci Technol. 31(8), 2237-2243.
22. Sun S., Ren Y., Guo F., Zhou Y., Cui M., Ma J., Han Z., Khim J., 2023. Comparison of effects of multiple oxidants with an ultrasonic system under unified system conditions for bisphenol A degradation. Nati Libr Med. 329, 138526.
23. Liu Y.C., Liu X., Zhang G.H., Liu W., Wang J.Q., Wang X., Chen C.L., Wang,Y., Xiang Z., 2023. Performance and mechanism of a novel S-scheme heterojunction sonocatalyst CuS / BaWO4 for degradation of bisphenol A by ultrasonic activation. Environ. Res. 216 (Pt 4), 114720, DOI: 10.1016/j. envres.2022.114720 Preprints (www.preprints.org) | not peer-reviewed |
24. Deggelmann M., N¨opel J.A., Rüdiger F., Paustian D., Braeutigam P., 2022. Hydrodynamic cavitation for micropollutant degradation in water – Correlation of bisphenol A degradation with fluid mechanical properties. Ultrason Sonochem. 83, 105950.
25. Li X., Zhang Y., Xie Y., Zeng Y., Li P., Xie T., Wang Y., 2018, Ultrasonic-enhanced Fenton-like degradation of bisphenol A using a bio-synthesized schwertmannite catalyst. J Hazard Mater. 344, 689–697.
26. Entezari M.H., Petrier C., Devidal P., 2003. Sonochemical degradation of phenol in water: a comparison of classical equipment with a new cylindrical reactor. Ultrason. Sonochem. 10, 103–108.
27. Okitsu K., Iwasaki K., Yobiko Y., Bandow H., Nishimura R., Maeda Y., 2005. Sonochemical degradation of azo dyes in aqueous solutions: a new heterogeneous kinetics model taking into account the local concentration of OH radicals and azo dyes. Ultrason Sonochem. 12, 255–262.
28. Inoue M., Okada F., Sakurai A., Sakakibara M., 2006. A new development of dyestuffs degradation system using ultrasound. Ultrason Sonochem.13, 313–320.
29. Merouani S., Hamdaoui O., Saoudi F., Chiha M., 2010. Sonochemical degradation of Rhodamine B in aqueous phase: effects of additives. Chem Eng J. 158, 550–557.
30. Kobayashi D., Honma C., Suzuki A., Takahashi T., Matsumoto H., Kuroda C., Otake K., Shono A., 2012. Comparison of ultrasonic degradation rates constants of methylene blue at 22.8 kHz, 127 kHz, and 490 kHz. Ultrason Sonochem. 19, 745–749.
31. Kobayashi D., Honma C., Matsumoto H., Takahashi T., Kuroda C., Otake K., Shono A., 2014. Kinetics analysis for development of a rate constant estimation model for ultrasonic degradation reaction of methylene blue. Ultrason Sonochem. 21, 1489–1495.
32. Kruus P., Burk R.C., Entezari M.H., Otson R., 1997. Sonication of aqueous solutions of chlorobenzene. Ultrason. Sonochem.4, 229–233.
33. Petrier C., Francony A., 1997. Ultrasonic waste-water treatment: incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation. Ultrason. Sonochem. 4, 295–300.
34. Sponza D.T., Oztekin R., 2014. Dephenolization, dearomatization and detoxification of olive mill wastewater with sonication combined with additives and radical scavengers. Ultrason Sonochem. 21(3), 1244–1257.
35. Zheng W., Maurin M., M.A. Tarr M.A., 2005. Enhancement of sonochemical degradation of phenol using hydrogen atom scavengers. Ultrason Sonochem. 12(4), 313–317.
36. Shirajum M., Ashifuzzaman, M. I., Jahangir H., Kenji O., Hafizur R., Shaharul I., Helal U., 2022. Effects of Additives on Sonolytic Degradation of Azo Dye Molecules Found in Industrial Wastewater. Jurnal Kejuruteraan. 34(1), 41-50.
37. Monjurul I., Saifur Rahman B.M., Most Shahida Kh., Jahangir H., Tanjirul H., Shaharul I, Arifuzzaman Khan G. M., Helal U., 2018. Sonochemical degradation of phenol and Para-Chlorophenol in an Ultrasonic bath in the presence of inorganic salts and H2O2. International Journal for Excogitation Education and Research. 1(1), 22-33.
38. Jahangir H., Shirajum M., M. Sh., Samiul B. A., Shaharul I., Marjia Kh., Abdur Razzaque S.M., Helal U., 2023. Effect of Additives on Decomposition of Methyl Orange and Congo Red Dyes Found in Industrial Wastewater. Asian Journal of Physical and Chemical Sciences. 11(3), 52-63.
39. Nagpal M., Kakkar R., 2019. Use of metal oxides for the adsorptive removal of toxic organic pollutants. Sep Purif Technol. 211, 522–539.
40. Wawrzkiewicz M., Wi´sniewska M., Wołowicz A., Gun’ko V.M., Zarko V.I., 2017. Mixed silica-alumina oxide as sorbent for dyes and metal ions removal from aqueous solutions and wastewaters. Microporous Mesoporous Mater. 25, 128–147.
41. Danish M.S.S., Bhattacharya A., Stepanova D., Mikhaylov A., Grilli M.L., Khosravy M., Senjyu T., 2020. A Systematic Review of Metal Oxide Applications for Energy and Environmental Sustainability. Metals. 10, 1604.
42. Huang Y., Su W., Wang R., Zhao T., 2019. Removal of typical industrial gaseous pollutants: From carbon, zeolite, and metal-organic frameworks to molecularly imprinted adsorbents. Aerosol Air Qual Res. 19, 2130–2150.
43. Lee K.M., Lai C.W., Ngai K.S., Juan J.C., 2016. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res. 88, 428–448.
44. Hashimoto K., Irie H., Fujishima A., 2005. TiO2 photocatalysis: A historical overview and future prospects. Jpn J Appl Phys. 44, 8269–8285.
45. Dastan D., Panahi S.L., Chaure N.B., 2016. Characterization of titania thin films grown by dip-coating technique. J Mater Sci Mater Electron. 27, 12291–12296.
46. Dastan D., Panahi S.L., Yengantiwar A.P., Banpurkar A.G., 2016. Morphological and electrical studies of titania powder and films grown by aqueous solution method. Adv Sci Lett. 22, 950–953.
47. Dastan D., 2017, Effect of preparation methods on the properties of titania nanoparticles: Solvothermal versus sol-gel. Appl Phys. A, 1–13, 123–699.
48. Azmina M.S., Nor R.M., Rafaie H.A., Razak N.S.A., Sani S.F.A., Osman Z., 2017. Enhanced photocatalytic activity of ZnO nanoparticles grown on porous silica microparticles. Appl Nanosci. 7, 885–892.
49. Hariharan C., 2006, Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited. Appl Catal A Gen. 304, 55–61.
50. Zhaobing G., Qiongyuan D., Duliang H., Chaozhi Zh. , 2012, Gamma radiation for treatment of bisphenol A solution in presence of different additives. Chemical Engineering Journal. 183, 10–14.
51. Bekkouche S., Bouhelassa M., Hadj Salah N., Meghlaoui F.Z., 2004. Study of adsorption of phenol on titanium oxide (TiO2). Desalination. 166, 355-362.
52. Sin J.C., Lam S.M., Lee K.T., Mohamed A.R., 2013. Photocatalytic performance of novel samarium-doped spherical-like ZnO hierarchical nanostructures under visible light irradiation for 2,4-dichlorophenol degradation. J Colloid Interf Sci. 401, 40–49.
53. Kamaraj M., Nithya T.G., Chidambararajan P., Muluken Kebede, 2020, Photocatalytic degradation of Bisphenol-A in water under sunlight irradiation over ZnO nanoparticles fabricated by Ethiopian cactus pear fruit peel infusions, Optik - International Journal for Light and Electron Optics. 208, 164539.
54. Mukimin A., Wijaya K., Kuncaka A., 2012. Oxidation ofremazolbrilliant bluer (RB.19) with in situ electro-generated activechlorine using Ti/PbO2 electrode. Sep Purif Technol. 95, 1−9.
55. Fındık S., Gündüz G., 2007. Sonolytic degradation of acetic acid in aqueous solutions. Ultrasonics Sonochemistry. 14(2), 157-162.
56. Seymour J.D., Gupta, R.B. 1997. Oxidation of aqueous pollutants using ultrasound: salt-induced enhancement. Industrial & Engineering Chemistry Research. 36(9), 3453-3457.
57. Kim I., Hong S., Hwang I., Kwon D., Kwon J, Huang C.P., 2007. TOC and THMFP reduction by ultrasonic irradiation in waste water effluent. Desalination. 202(1-3), 9–15.
58. Gogate P.R., Pandit A.B 2004. A review of imperative technologies for wasterwater treatment II: hybrid methods. Advances in Environmental Research. 8(3-4), 553–597.
59. Zühlke M.K., Schlüter R., Mikolasch A., Henning A.K., Giersberg M., Lalk M., Kunze G., Schweder T., Urich T., Schauer F., 2020. Biotransformation of bisphenol A analogues by the biphenyl-degrading bacterium Cupriavidus basilensis - a structure-biotransformation relationship. Appl Microbiol Biotechnol. 104, 3569–3583
60. Stack D.E., Mahmud B., 2018. Efficient access to bisphenol A metabolites: Synthesis of monocatechol, mono-oquinone, dicatechol, and di-o-quinone of bisphenol A. Synt Commun. 48(2), 161–167.
61. Wua Q., Fanga J., Li S., Wei J., Yanga Z., Zhaoa H., Zhaoa C., Cai Z., 2017. Interaction of bisphenol A 3,4- quinone metabolite with glutathione and ribonucleosides/deoxyribonucleosides in vitro. J HazMat. Part A. 323, 195-202.
62. Deborde M., Rabouana S., Mazellier P., Duguet J.P., Legube B., 2008. Oxidation of bisphenol A by ozone in aqueous solution. Water Res. 42, 4299–4308.
63. Widhiastuti F., Fan L., Paz-Ferreiro J., Chiang K., 2022. Oxidative treatment of bisphenol A by Fe(VI) and Fe(VI)/H2O2 and identification of the degradation products. Environ Technol Innov. 28, 102643.
64. Gao C., Zeng Y.H.; Li C.Y., Li L., Cai Z.H., Zhou J., 2021. Bisphenol A biodegradation by Sphingonomas sp. YK5 is regulated by acyl-homoserine lactone signaling molecules. Sci Total Environ. 802, 1-8.
65. Yue W., Yin C.F., Sun L., Zhang J., Xu Y., Zhou N.I., 2021. Biodegradation of bisphenol A polycarbonate plastic by Pseudoxanthomonas sp. Strain NyZ600. J Haz Mat. 416, 1-11.