Elastic Buckling Analysis of Composite Shells with Elliptical Cross-section under Axial Compression
محورهای موضوعی : فصلنامه شبیه سازی و تحلیل تکنولوژی های نوین در مهندسی مکانیکمنصور درویزه 1 , ابوالفضل درویزه 2 , رضا انصاری 3 , الهام کاظمی 4
1 - استاد، دانشکده مکانیک، دانشگاه گیلان.
2 - استاد، دانشگاه آزاد اسلامی واحد بندر انزلی
3 - استادیار، دانشکده مکانیک، دانشگاه گیلان
4 - کارشناس ارشد، دانشکده مکانیک، دانشگاه گیلان
کلید واژه: Finite Element, Composite shells, Critical buckling load, First order shear deformation, Elliptical cross-section,
چکیده مقاله :
In the present research, the elastic buckling of composite cross-ply elliptical cylindrical shells under axial compression is studied through finite element approach. The formulation is based on shear deformation theory and the serendipity quadrilateral eight-node element is used to study the elastic behavior of elliptical cylindrical shells. The strain-displacement relations are accurately accounted for in the formulation in local coordinate system. The contributions of the work done by applied load are also incorporated. The obtained governing equations by the principle of minimum potential energy is solved through eigenvalue approach. The influence of elliptical cross-sectional parameters on the critical buckling loads of elliptical cylindrical shells is examined .Results show that changes in the elliptical cross-sectional parameters significantly change critical buckling loads of the elliptical cylindrical shells.
در این مقاله به بررسی کمانش الاستیک پوستههای مرکب با سطح مقطع بیضی با چیدمان صفر و نود درجه که تحت بار محوری فشاری هستند، پرداخته میشود. روش حل بر مبنای اجزا محدود، براساس تئوری تغییر شکل برشی مرتبه اول اتخاذ شده است. یک المان هشت گرهای برای به دست آوردن رفتار الاستیکی پوسته بیضوی در نظر گرفته شده است. کرنشها بر اساس جابهجاییها در مختصات محلی پوسته به دقت محاسبه شده و کار انجام شده توسط بار اعمالی به سازه، در نظر گرفته شده است. معادلات تعادل با استفاده از حداقل کردن انرژی پتانسیل به دست آمدهاند و با استفاده از روش صفر کردن دترمینان ماتریس سیستم، حل شدهاند. اثر تغییر پارامتر سطح مقطع بیضی (نسبت شعاع بزرگ به شعاع کوچک بیضی) بر روی بار کمانش بحرانی پوسته استوانه بیضوی بررسی شده است. نتایج مؤید این مطلب است که تغییر در پارامتر سطح مقطع بیضی میتواند به طور محسوسی بار کمانش بحرانی را تغییر دهد.
[1] Lorenz R., , Achsensymmetrische verzerrungen in dünnwandingen hohlzzylindern, Zeitschrift des Vereines Deutscher Ingenieure, 52 (43), 1908, pp.1706-1713.
[2] Donnell L.H., A new theory for the buckling of thin cylinders under axial compression and bending, Transactions of ASME, 56, 1934, pp. 795-806.
[3] VonKarman T., Tsien H.S., The buckling of thin cylindrical shells underaxial compression, Journal of Aeronautical Science, 8(6), 303-312.
[4] Donnel L.H., Wan C.C., , Effect of imperfections on the buckling of thin cylinders and columns under axial compression, Journal of Applied Mechanics (ASME), 17(1), 1950,pp. 73-83.
[5] Koiter W.T., Over der Stabiliteit van het Elastische Evenwicht, Ph.D. Thesis, Delft University, The Netherlands. (English: On the Stability of Elastic Equilibrium, 1945,NASA Report TT-F-10833, 1967.)
[6] Marguerre K., Stability of cylindrical shells of variable curvature, NACA TM, 1951, 1302.
[7] Kempner J., Chen Y.N., , Large deflections of an axially compressed oval cylindrical shell, In: Proceedings of the 11th International Congress on Applied Mechanics. Springer-Verlag, Berlin, 1964, pp. 299-306.
[8] Kempner J., Chen Y.N., Buckling and postbuckling of an axially compressed oval cylindrical shell, In: Symposium on the Theory of Shells to Honor Lloyd H. Donnell, McCuthan Publishers Co., 1967, pp. 141-183.
[9] Feinstein G., Chen Y.N., Kempner J., Buckling of clamped oval cylindrical shells under axial loads, AIAA Journal, 9 (9), 1971, pp.1733-1738.
[10] Feinstein G., Erickson B., Kempner J., Stability of oval cylindrical shells, Journal of Experimental Mechanics, 11(11), 1971, pp.
514-520.
[11] Hutchinson J.W., Buckling and initial post-buckling behaviour of oval cylindrical shells under axial compression, Journal of Applied Mechanics(Transactions of ASME), 35(1), 1968, pp. 66-72.
[12] Tennyson R.C., Booton M., Caswell R.D., Buckling of imperfect elliptical cylindrical shells under axial compression, AIAA Journal, 9(2), 1971, pp. 250-255.
[13] Sun G., Buckling and initial post-buckling behaviour of laminated oval cylindrical shells under axial compression, Journal of Applied Mechanics(Transactions of ASME), 58, 1991,
pp. 848-851.
[14] Sheinman I., Firer M., Buckling analysis of laminated cylindrical shells with arbitrary non-circular cross-section, AIAA Journal, 32(5), 1994, pp. 648-654.
[15] Suzuki K., Shikanai G., Leissa A.W., Free vibrations of laminated composite thin
non-circular cylindrical shell, Journal of Applied Mechanics, 61, 1994, pp. 861-871.
[16] Soldatos K.P., Mechanics of cylindrical shells with non-circular cross-section, Applied Mechanics, 52, 1999, pp. 237-274.
[17] Meyers C.A., Hyer M.W., Response of elliptical composite cylinders to axial compression loading, Mechanics of Advanced Materials and Structures, 6(2), 1996, pp. 169-194.
[18] Sambandama C.T., Patel B.P., Gupta S.S., Munot C.S., Ganapathi M., Buckling characteristics of cross-ply elliptical cylinders under axial compression, Composite Structures, 62(1), 2003, pp. 7-17.
[19] Gardner L., Structural behaviour of oval hollow sections, International Journal of Advanced Steel Construction, 1(2), 2005, pp. 26-50.
[20] Chan T.M., Gardner L., Compressive resistance of hot-rolled elliptical hollow sections, Engineering Structures, 30 (2), 2008, pp. 522-532.
[21] Zhu Y., Wilkinson T., Finite element analysis of structural steel elliptical hollow sections in compression, Research Report No. R874, Centre for Advanced Structural Engineering, The University of Sydney, 2007.
[22] Kempner J., Some results on buckling and post-buckling of cylindrical shell, In: Collected Papers on Instability of Shell Structures. NASA TND, 1510, 1962,pp. 173-186.
[23] Almorth BO, Brogan FA, Marlowe MB., Collapse analysis of elliptic cones. Am Inst Aeronaut Astronaut J, 9, 1971, pp. 32-37.
[24] Bushnell D., Stress buckling and vibration of prismatic shells, Am Inst Aeronaut Astronaut J, 9, 1971, pp. 2004-2013.
[25] Chen YN, Kempner J., Buckling of oval cylindrical shell under compression and asymmetric bending, Am Inst Aeronaut Astronaut J, 14, 1976, pp. 1235-1240.
[26] Koroleva EM ., Stability of cylindrical shells of oval cross-section in the bending stress-state, Prikl Mat Mekh, 37, 1974, pp. 901-903.
[27] Volpe V, Chen YN, Kempner J., Buckling of orthogonally stiffened finite oval cylindrical shells shells under axial compression, Am Inst Aeronaut Astronaut J, 18, 1980, pp. 571-80.
[28] Semenyuk NP., Stability of non-circular cylindrical shells shells under axial compression, Sov Appl Mech, 20, 1984, pp. 813-818.
[29] Zienkiewicz O.C., Taylor R.L ., The finite element method, Volume 1: Solid Mechanics, Mc Graw-Hill , 1967.
[30] Bhaskar K., Varadan TK., A higher-order theory for bending analysis of laminated shells of revolutions, Comput Struct , 40, 1991, pp. 815-819.
[31] Suzuki K., Shikanai G., Leissa A.W., Free vibrations of laminated composite thick noncircular cylindrical shell, Int J Solids Struct, 1996, pp. 4079-4100.
[32] Kraus H., Thin elastic shells, New York, John Wiley, 1976.