Assessment of a Column Type Six-Component Force/Torque Sensor by Theoretical, Simulation and Experimental Approaches
محورهای موضوعی : فصلنامه شبیه سازی و تحلیل تکنولوژی های نوین در مهندسی مکانیکسیدرضا حمزه لو 1 , محمدمراد شیخی 2 , حسین اکبری 3
1 - استادیار دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهیدرجائی
2 - استادیار دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهیدرجائی
3 - دانشجوی دکتری، مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجایی، تهران.
کلید واژه: "Six-component force/torque sensor", "Strain gauge", "Calibration matrix",
چکیده مقاله :
حسگرهای نیرو/گشتاور چندمولفهای کرنشسنجدار، برای اندازهگیری همزمان نیروها و گشتاورهای استاتیکی و دینامیکی شامل سه مولفهی نیرو و سه مولفهی گشتاور در دستگاه مختصات دکارتی یک سیستم استفاده میشوند. در این تحقیق، یک حسگر نیرو/گشتاور ششمولفهای نوع ستونی، با سطح مقطع دایروی توخالی معرفی شده است. به منظور جداسازی الکتریکی مولفههای بار اعمالی بر آن و بر پایهی مبانی نظری، الگوهایی خاصی برای نصب کرنشسنجها ارائه شده که بررسی صحت این الگوها با شیبهسازی المان محدود در نرمافزار آباکوس انجام گرفته است. در ادامه بارگذاریهای مختلفی به یک نمونهی ساخته شده از این حسگر اعمال شده و کرنشهای تجربی اندازهگیری شده است. نتایج نشان میدهد که نه تنها اندازهی واقعی درایههای قطر اصلی ماتریس کالیبراسیون، انحرافهایی نسبت به اندازهی نظری آنها دارد بلکه؛ این ماتریس لزوماً قطری نیست. درصد انحراف کرنشهای شبیهسازی از نظری در همه پلها زیر %0/3 در تمام شرایط بارگذاری بدست آمده است. همچنین کمترین و بیشترین درصد انحراف کرنشهای تجربی از نظری در بیشینه بار مجاز هر محور، به ترتیب مربوط به نیروی برشی Px و ممان خمشی Mx بوده که برابر %%62/1 و %12/8 میباشد.
A multi-component force/torque sensor using strain gauges is applied to measure the static or dynamic forces and also the moments in all axis simultaneously. The applied column-type six-component force/torque sensor is composed of two flanges and a cylindrical elastic force-sensing element with a particular pattern of installed strain gauges. In this research the pattern of strain gauges on sensor is presented to electrically decouple each component of the applied loads. The theoretical model was developed for the presented pattern. Also the finite element simulation carried out with ABAQUS for whole model to evaluate the accuracy of the pattern in different situations. Furthermore, variety of load cases including the axial loads, the torsional torque and bending moments were applied to the prototype sensor to report the percentage deviations of experimental strains related to the equivalent theoretical model and the simulations. The results show that the actual values of the main diameter components of the calibration matrix not only are different from the theoretical values but also this matrix would not necessarily be diagonal. It is observed that the percent deviation of the simulation strains from theoretical values in all loading cases would be under 3%. As a prominent result, the minimum and maximum deviation between theoretical and experimental is related to shear force (Px) and bending moment (Mx) respectively by values of 0.27% and 8.12%.
[1] Kim J.H., Oh J.H., Realization of dynamic walking for the humanoid robot platform KHR-1, Advanced Robotics, vol. 18, 2004, pp. 749–768.
[2] Kim J.Y., Kim J.H., Error analysis and effective adjustment of the walking ready posture for a biped humanoid robot, Advanced Robotics, vol. 24, 2010, pp. 2137–2169.
[3] Liu T., Inoue Y., Shibata K., Wearable force sensor with parallel structure for measurement of ground-reaction force, Measurement, vol. 40, 2007, pp. 644–653.
[4] Krouglicof N., Alonso L.M., Keat W.D., Development of a mechanically coupled, six degree-of-freedom load platform for biomechanics and sports medicine, IEEE International Conference on Systems, Man and Cybernetics, 2004, The Hague, Netherlands.
[5] Yang S.S., Han W.S., Hwang H.W., Radiography system and moving method thereof, U.S. Patent No. 20120087480 A1, 2012.
[6] Kim J.H., Han J.W., Kim D.Y., Baek Y.S., Design of a walking assistance lower limb exoskeleton for paraplegic patients and hardware validation using CoP, International Journal of Advanced Robotic Systems. vol. 10, 2013, pp. 11–13.
[7] Li X., Xu G., Ueda T., Tomita S., Nishihara T., Kitamura C., Research on a novel sensor for measuring force in arbitrary direction, International Conference on Computer and Electrical Engineering, 2008, Phuket, Thailand.
[8] Sheng A.L., Hung L.T., A novel six-component force sensor of good measurement isotropy and sensitivities, Sensor and Actuators A: Physical, Vol. 100, No. 2, 2002, pp. 223-230.
[9] Q.K. Liang, D. Zhang, Y.J. Ge, Q.J. Song, "A novel miniature four dimensionalforce/torque sensor with overload protection mechanism", Sensors Journal, IEEE vol. 9, No. 12, 2009, pp. 1741–1747
[10] Spletzer B.L., LOAD CELL, U.S. Patent No. 5850044, 1998.
[11] Kang D.I., Shin H.H., Kim J.H., Park Y.K., Design and Analysis of a Column Type Multi-Component Force/Moment Sensor, 17th International Conference on Force, Mass, Torque and Pressure Measurements, IMEKO TC3, 2001, Istanbul, Turkey.
[12] Park Y.K., Kumme R., Roeske D., Kang D.I., EVALUATION OF MULTI-COMPONENT FORCE TRANSDUCERS HAVING COLUMN TYPE SENSING ELEMENT, XIX IMEKO World Congress on Fundamental and Applied Metrology, 2009, Lisbon, Portugal.
[13] Chen D., Song A., Li A., Design and Calibration of a Six-axis Force/torque Sensor with Large Measurement Range Used for the Space Manipulator, Procedia Engineering, vol. 99, 2015, pp.1164-1170.
[14] Kang C.G., Maximum Structural Error Propagation of Multi-Axis Force Sensors, JSME International Journal Series C mechanical systems machine elements and manufacturing, vol. 44, No. 3, 2001, pp. 676-681.
[15] Nakamura Y., Yoshikawa T., Futamata I., Design and signal processing of six-axis force sensor, 4th International Symposium of Robotics Research, 1988, MIT Press, Cambridge, Mass, USA.
[16] Baoyuan W., Jianfei L., Shen. F., Yang R., Zhongcheng W., Optimum design method of multi-axis force sensor integrated in humanoid robot foot system, Measurement, vol. 44, No. 9, 2011, pp. 1651–1660.
[17] Kim G.S., Kang D.I, Rhee S.H., Design and fabrication of a 6-component force/moment sensor, Sensor and Actuators A: Physical, vol. 77, No. 3, 1999, pp. 209–220.
[18] Kim G.S., The design of a six-component force/moment sensor and evaluation of its uncertainty, Measurement Science and Technology, vol. 12, No. 9, 2001, pp. 1445–1455.