Time Dependent Analysis of Micro-tubes Conveying Nanofluids Under Time-Varying Heat Flux
محورهای موضوعی : فصلنامه شبیه سازی و تحلیل تکنولوژی های نوین در مهندسی مکانیکمحمد حسینی 1 , میثم خالویی 2 , عباس زندی باغچه مریم 3
1 - استادیار، گروه مهندسی مکانیک، دانشگاه صنعتی سیرجان، سیرجان، ایران
2 - کارشناس ارشد، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی واحد سیرجان، سیرجان، ایران
3 - کارشناس ارشد، گروه مهندسی مکانیک، دانشگاه صنعتی سیرجان، سیرجان، ایران
کلید واژه: heat transfer, Nanofluid, Micro-tubes, Time-varying heat flux,
چکیده مقاله :
In this paper the numerical analysis of flow and time dependent heat transfer of micro-tube conveying nanofluid in laminar flow is investigated. In this study, convection heat transfer of nanofluid and base fluid and transient analysis for time-varying heat flux for time step of 0.0001 second are elucidated. It is observed that the pumping power of nanofluid flowing and the maximum temperature of micro-tube wall, respectively, is increased and decreased with increases in the volume fraction of nanoparticle. The maximum temperature of base fluid (water) is 305.6K and the maximum temperature is 304.2K for alumina oxide nanoparticle AF with volume fraction 3%. In addition, the results show that using nanofluid has the advantage of heat transfer despite periodic heat flux. However, the results show that these parameters are vital in investigation of the heat transfer of system. Also, It is obvious that the maximum temperature of micro-tube wall decreases with increase in the Reynolds number. For example, for Reynolds numbers 180, 360 and 720, the maximum temperatures occur at 307.8K, 304.6K and 302.8K, respectively. In addition, it is indicated that the variation of temperature decreases when the volume fraction of nanoparticles increases. Also the results of numerical modeling are compared with those available in literature and good agreement is observed.
در این مقاله تحلیل عددی جریان و انتقال حرارت وابسته به زمان میکرولوله محتوی نانوسیال در جریان آرام بررسی شده است. در این بررسی، انتقال حرارت جابهجایی نانوسیال و سیال پایه و تحلیل گذرا برای شار حرارتی متغیر با زمان، بهازای گام زمانی 4-10 ثانیه بررسی شده است. مشاهده شد که با افزایش کسر حجمی نانوذره، قدرت پمپاژ نانوسیال و دمای حداکثر دیواره میکرولوله بهترتیب افزایش و کاهش پیدا میکند. حداکثر دما سیال پایه (آب) 6/305 کلوین و برای نانوذره اکسید آلومینیوم AF با کسر حجمی سه درصد، دمای حداکثر 2/304 کلوین میباشد. علاوهبراین نتایج نشان داد که استفاده از نانوسیال با وجود شار حرارتی پریودیک دارای مزیت انتقال حرارتی است. از سویی دیگر نتایج نشان میدهد که پارامترهای ذکر شده، تأثیر قابل توجهی در انتقال حرارت سیستم دارند. همچنین مشاهده گردید که با افزایش عدد رینولدز دمای حداکثر دیواره میکرولوله کاهش پیدا میکند. بهعنوان مثال، برای عدد رینولدز 180، 360 و 720 دمای حداکثر به-ترتیب در 307.8 کلوین،304 کلوین و 302.8 کلوین رخ میدهد. علاوه براین افزایش کسر حجمی نانوذره موجب کاهش در تغییرات دما میشود. همچنین نتایج حاصل از مدل-سازی عددی با نتایج روابط تئوریک موجود که در تطابق خوبی با نتایج تجربی بودهاند، مقایسه شده است.
[1] J. C. Maxwell, A treatise on electricity and magnetism: Clarendon press,Oxford, 1881.
[2] S. P. Jang, S. U. Choi, Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Applied physics letters, Vol. 84, No. 21, pp. 4316-4318, 2004.
[3] D. Wen, Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, International journal of heat and mass transfer, Vol. 47, No. 24, pp. 5181-5188, 2004.
[4] S. Z. Heris, S. G. Etemad, M. N. Esfahany, Experimental investigation of oxide nanofluids laminar flow convective heat transfer, International Communications in Heat and Mass Transfer, Vol. 33, No. 4, pp. 529-535, 2006.
[5] S. Z. Heris, M. N. Esfahany, G. Etemad, Numerical investigation of nanofluid laminar convective heat transfer through a circular tube, Numerical Heat Transfer, Part A: Applications, Vol. 52, No. 11, pp. 1043-1058, 2007.
[6] K. S. Hwang, S. P. Jang, S. U. Choi, Flow and convective heat transfer characteristics of water-based Al 2 O 3 nanofluids in fully developed laminar flow regime, International journal of heat and mass transfer, Vol. 52, No. 1, pp. 193-199, 2009.
[7] S. Mirmasoumi, A. Behzadmehr, Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube, International journal of heat and fluid flow, Vol. 29, No. 2, pp. 557-566, 2008.
[8] M. Izadi, A. Behzadmehr, D. Jalali-Vahida, Numerical study of developing laminar forced convection of a nanofluid in an annulus, International journal of thermal sciences, Vol. 48, No. 11, pp. 2119-2129, 2009.
[9] K. Anoop, T. Sundararajan, S. K. Das, Effect of particle size on the convective heat transfer in nanofluid in the developing region, International journal of heat and mass transfer, Vol. 52, No. 9, pp. 2189-2195, 2009.
[10] M. K. Moraveji, M. Darabi, S. M. H. Haddad, R. Davarnejad, Modeling of convective heat transfer of a nanofluid in the developing region of tube flow with computational fluid dynamics, International Communications in Heat and Mass Transfer, Vol. 38, No. 9, pp. 1291-1295, 2011.
[11] ن. بزرگان، پ. ف. بزرگان، بررسی کاربرد نانو سیالات اتیلن گلیکول-اکسید آلومینیوم به عنوان سیال خنک کننده در مبدل حرارتی دو لوله ای، مهندسی مکانیک مدرس، جلد 11، شماره 3، صفحه 75-84، 1390
[12] İ. O. Sert, N. Sezer-Uzol, S. Kakaç, Numerical analysis of transient laminar forced convection of nanofluids in circular ducts, Heat and Mass Transfer, Vol. 49, No. 10, pp. 1405-1417, 2013.
[13] E. B. Haghighi, M. Saleemi, N. Nikkam, Z. Anwar, I. Lumbreras, M. Behi, S. A. Mirmohammadi, H. Poth, R. Khodabandeh, M. S. Toprak, Cooling performance of nanofluids in a small diameter tube, Experimental Thermal and Fluid Science, Vol. 49, pp. 114-122, 2013.
[14] R. Davarnejad, S. Barati, M. Kooshki, CFD simulation of the effect of particle size on the nanofluids convective heat transfer in the developed region in a circular tube, SpringerPlus, Vol. 2, No. 1, pp. 192, 2013.
[15] A. Adil, S. Gupta, P. Ghosh, Numerical prediction of heat transfer characteristics of nanofluids in a minichannel flow, Journal of Energy, Vol. 2014, No. 1, pp. 1-7, 2014.
[16] Z. Y. Ghale, M. Haghshenasfard, M. N. Esfahany, Investigation of nanofluids heat transfer in a ribbed microchannel heat sink using single-phase and multiphase CFD models, International Communications in Heat and Mass Transfer, Vol. 68, pp. 122-129, 2015.
[17] I. Behroyan, S. M. Vanaki, P. Ganesan, R. Saidur, A comprehensive comparison of various CFD models for convective heat transfer of Al2O3 nanofluid inside a heated tube, International Communications in Heat and Mass Transfer, Vol. 70, pp. 27-37, 2016.
[18] B. Ghasemi, S. Aminossadati, Natural convection heat transfer in an inclined enclosure filled with a water-CuO nanofluid, Numerical Heat Transfer, Part A: Applications, Vol. 55, No. 8, pp. 807-823, 2009.
[19] B.-H. Chun, H. U. Kang, S. H. Kim, Effect of alumina nanoparticles in the fluid on heat transfer in double-pipe heat exchanger system, Korean Journal of Chemical Engineering, Vol. 25, No. 5, pp. 966-971, 2008.
[20] T. L. Bergman, F. P. Incropera, Introduction to heat transfer: John Wiley & Sons, New York, 2011.
[21] A. R. Hambley, N. Kumar, A. R. Kulkarni, Electrical engineering: principles and applications: Pearson Prentice Hall,New York, 2008.
[22] R. K. Shah, A. L. London, Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data: Academic press, 2014.
[23] R. K. Shah, M. Bhatti, Laminar convective heat transfer in ducts, Handbook of single-phase convective heat transfer, Vol. 3, 1987.