بررسی اثر نانوکورکومین در درمان کبد چرب غیرالکلی در موشهای هایپرکلسترولمی
محورهای موضوعی :
فصلنامه زیست شناسی جانوری
سحر فرزانه
1
,
سپیده فرهی نیا
2
1 - گروه زیست شناسی، واحد پرند، دانشگاه آزاد اسلامی، پرند، ایران
2 - گروه زیست شناسی، واحد پرند، دانشگاه آزاد اسلامی، پرند، ایران
تاریخ دریافت : 1396/11/30
تاریخ پذیرش : 1396/11/30
تاریخ انتشار : 1396/09/01
کلید واژه:
هیستوپاتولوژی,
موش,
آنزیمهای کبدی,
نانوکوکومین,
کبد چرب غیرالکلی,
چکیده مقاله :
با توجه به کاربرد وسیع نانوذرات در پزشکی، بررسی پاتولوژی آنها ضروری بنظر می رسد. ویژگی مهم نانوذرات، اندازه کوچک آنها است. تجمع بیش از حد چربی در کبد و التهاب آن موجب سیروز کبدی می گردد. هدف از این مطالعه، تعیین اثر نانوکورکومین بر بیماری کبد چرب و کلسترول، تری گلیسیرید، لیپوپروتئین با دانسیته بالا (HDL)، لیپوپروتئین با دانسیته پایین (LDL)، آسپارتات آمینوترانسفراز (AST) و آلانین آمینوترانسفراز (ALT) سرم می باشد. در این مطالعه 60 سر موش نر در 6 گروه ده تایی تقسیم شدند که شامل: گروه کنترل، گروه کلسترول، گروه کلسترول و کورکومین و سه گروه دریافت کننده دوزهای مختلف نانوکورکومین که به صورت گاواژ تغذیه شدند. میزان پروفایل لیپیدی و آنزیم های کبدی اندازه گیری و نمونه بافت کبد موش ها پس از تثبیت در بافر فرمالین و رنگ آمیزی با هماتوکسیلین و ائوزین مورد مطالعه قرار گرفتند. تحلیل داده ها توسط نرم افزارSPSS انجام شد. بررسی ها نشان داد که درگروه تغذیه شده با دوز بالای نانوکورکومین میزان تری گلیسرید، کلسترول، LDL، ASTو ALT به طور معنی داری کاهش و در دو گروه دریافت کننده دوز 50 و 100 نانوکورکومین، نسبت به گروه کورکومین(غیرنانو) و گروه کلسترول کاهش معنی داری را نشان دادند. پروفایل لیپیدی، AST و ALT گروه کورکومین غیرنانو نسبت به گروه کنترل کاهش معنی داری نداشت اما تغیر در میزانHDL معنی دار بود. تغییرات آسیب شناسی کبد گروه دریافت کننده ی کلسترول موجب ایجاد توده های چربی و گروه های تغذیه شده توسط دوز 50 نانوکورکومین اثری از توده چربی نداشتند. نتایج نشان داد که می توان از دوزهای مناسب نانوکورکومین برای درمان بیماری کبد چرب غیرالکلی استفاده نمود.
چکیده انگلیسی:
According to the widespread use of nanoparticles in medicine, the pathological study seems to be necessary. Important properties of nanoparticles are their small size. Accumulation of fat and inflammation of the liver are the beginning stage of liver cirrhosis. We aimed to determine the effect of nano-curcumin on fatty liver disease. Sixty male mice were divided into 6 groups (n=10): control, gavaged with normal food. The second group were fed cholesterol, third group were fed cholesterol and curcumin. Other groups were fed different dose of nano-curcumin. Then, lipid profile and liver enzymes were measured and liver tissues were fixed in formalin buffer, staining with hematoxylin-eosin. Data were analyzed using SPSS. Evaluation of serum cholesterol showed that treatment with curcumin significantly decreased cholesterol, TG, and LDL of plasma level. Histopathological changes of the liver in the group received cholesterol showed vacuoles of fat, in groups which were fed low doses of the nano-curcumin did not show fat vacuoles of fat. Nano-curcumin may be used in the safe doses for treatment of nonalcoholic fatty liver disease.
منابع و مأخذ:
Adams L.A., Angulo P., 2006. Treatment of non-alcoholic fatty liver disease. Postgraduate Medical Journal, 82(967): 315-322.
Bedogni G., Miglioli L., Masutti F., Tiribelli C., Marchesini G., Bellentani S., 2005. Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. Hepatology, 42(1): 44-52.
Birdane Y.O., Buyukokuroglu M.E., Birdane F.M ,.Cemek M., Yavuz H., 2007. Anti-inflammatory and antinociceptive effects of Melissa officinalis L. in rodents. Review of Medicine and Veterinary, 158(02): 75-81.
Christopher P.D, Oliver F.W.J., 1998. Steatohepatitis: a tale of two “hits”?. Gastroenterology, 114(4): 842-845.
Edmison J., Mc Cullough A.J., 2007. Pathogenesis of non-alcoholic steatohepatitis: human data. Clinics in Liver Disease, 11(1):75-104.
Elias M.C., Parise E.R., Carvalho L., Szejnfeld D., Netto J.P., 2010. Effect of 6-month nutritional intervention on non-alcoholic fatty liver disease. Nutrition, 26(11): 1094-1099.
Gaspar J., Rodrigues A., Laires A., Silva M.F., Costa S., Monteiro M.J., Monteiro C., Rueff J., 1994. On the mechanisms of genotoxicity and metabolism of quercetin. Mutagenesis, 9(5): 445-449.
Grattagliano I., Vendemiale G., Caraceni P., Domenicali M , Nardo B., Cavallari A., Trevisani F., Bernardi M., Altomare E., 2000. Starvation impairs antioxidant defense in fatty livers of rats fed a choline-deficient diet. Journal of Nutrition, 130(9): 2131-2136.
Jamali R., Khonsari M., Merat S.H., Khoshnia M., Jafari E., Bahram Kalhori A., Abolghasemi H, Amini S., Maghsoudlu M., Deyhim M.R., Rezvan H., Pourshams A.,2008. Persistent alanine aminotransferase elevation among the general Iranian population: prevalence and causes. World Journal of Gastroenterology, 14(18): 2867-2871.
Jou J., Choi S.S., Diehl A.M., 2008. Mechanisms of disease progression in nonalcoholic fatty liver disease. Liver Disease, 28(4): 370-379.
Kim J.G., Keshava C., Murphy A.A., Pitas R.E., Parthasarathy S., 1997. Fresh mouse peritoneal macrophages have low scavenger receptor activity. Journal of Lipid Research, 38. 2207-2215.
Kugelmas M., Hill D.B., Vivian B., Marsano L, McClain CJ., 2003. Cytokines and NASH: a pilot study of the effects of lifestyle modification and vitamin E. Hepatology, 38(2): 413-419.
Lettéron P., Fromenty B., Terris B, Degott C, Pessayre D., 1996. Acute and chronic steatosis leads to in vivo lipid peroxidation in mice. Journal of Hepatology, 24(2): 200-208.
Madan K., Bhardwaj P., Thareja S., Gupta S.D, Saraya A., 2006. Oxidant stress and antioxidant status among patients with nonalcoholic fatty liver disease (NAFLD). Journal of Clinical Gastroenterology, 40(10): 930-935.
Marchesini G., Bugianesi E., Forlani G., Cerrelli F., Lenzi M., Manini R., Natale S., Vanni E., Villanova N., Melchionda N., Rizzetto M., 2003. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology, 37(4): 917-923.
McCullough A.J., 2004. The clinical features, diagnosis and natural history of nonalcoholic fatty liver disease. Clinics in Liver Disease, 8(3): 521-534.
Musso G., Gambino R., Cassader M., 2010. Non-alcoholic fatty liver disease from pathogenesis to management: an update. Obesity Reviews, 11(6): 430-445.
Nakagawa K., Zingg J.M., Kim S.H., Thomas M.J., Dolnikowski G.G., Azzi A., Miyazawa T., Meydani M., 2014. Differential cellular uptake and metabolism of curcuminoids in monocytes/ macrophages: Regulatory effects on lipid accumulation. British Journal of Nuts, 112(1): 1-7.
Namjoo A.R., Kargar A., Heidarian E., Ashje A., Malki S, 2012. The toxicity effect of methyl mercury chloride on newborn rat: enzymatic, histology change and mercury accumulation. Journal of Shahrekord University of Medical Sciences, 14(2): 101-111.
Namjoo A.R., MirVakili M., Rafieian M., Faghani M., 2013. Histopatological and biochemical effects of subacute toxicity of lemon balm hydroalcoholic extract on liver and kidney tissues in the surri mice. Journal of Shahrekord University of Medical Sciences, 15(15): 62-72.
Nobili V., Manco M., Devito R., Di Ciommo V., Comparcola D., Sartorelli M.R., Piemonte F., Marcellini M., Angulo P., 2008. Lifestyle intervention and antioxidant therapy in children with nonalcoholic fatty liver disease: a randomized, controlled trial. Hepatology, 48(1): 119-128.
Obermeier MT., White RE., Yang CS., 1995. Effects of bioflavonoids on hepatic P450 activities. Xenobiotics, 25(6): 575-584.
Okita M., Hayashi M., Sasagawa T., Takagi K., Suzuki K., Kinoyama S., 2001. Effect of a moderately energy-restricted. Nutrition, 17(7-8):542-547.
Oliveira C.P., Gayotto L.C., Tatai C., Della Nina B.I., Lima E.S., Abdalla D.S., Lopasso F.P., Laurindo F.R., Carrilho F.J., 2003. Vitamin C and Vitamin E in Prevention of Nonalcoholic Fatty Liver Disease (NAFLD) in Choline Deficient Diet Fed Rats. Nutrition Journal, 7: 2-9.
Oliveira C.P., Gayotto L.C.C., Tatai C., Della Bina BI., Janiszewski M., Lima E.S., Abdalla D.S, Lopasso F.P., Laurindo F.R., Laudanna A.A., 2002. Oxidative stress in the pathogenesis of nonalcoholic fatty liver disease, in rats fed with a choline-deficient diet. Journal of Cell and Molecular Medicine, 6(3): 399-406.
Parakash P., Misra A., Surin W.R., Jain M, Bhatta R.S, Pal R, Raj K, Barthwal M.K, Dikshit M., 2011. Anti-platelet effects of Curcuma oil in experimental models of myocardial ischemia-reperfusion and thrombosis. Thrombosis Research, 127(2): 8-11.
Pincemail J., Siquet J., Chapelle J.P., Cheramy J.P., Paulinssen G., Chantillon A.M., Christiaens G., Gielen J., Limet R., Defraigne J.O., 2000. Determination of plasma Concentration of antioxidants, antibodies againtst oxidized LDL,and homocysteine In a population sample from liege :Ann . Biol-Clin-Paris, 58(2): 177-185.
Robaszkiewicz A., Balcerczyk A., Bartosz G., 2007. Antioxidative and prooxidative effects of quercetin on A549 cells. Cell Biol Int, 31(10): 1245-1250.
Rodríguez M.C., Parra M.D., Marques-Lopes I., Morentin B.E., González A., Martínez J.A., 2005. Effects of two energy restricted diets containing different fruit amounts on body weight loss and macronutrient oxidation. Plant Foods for Human Nutrition Formerly Qualitas Plantarum, 60(4): 219-224.
Salami F., 2013. Extraction of curcumin from turmeric by nano-formulation. Dissertation, Tehran, Payame Nour University, Iran.
Sharma R.A., Gescher A.J., Steward W.P., 2005. Curcumin: the story so far, European Journal of Cancer, 41(13): 1955-1968.
Soeda J., 2011. Pathophysiology and clinical management of non-alcoholic fatty liver disease. Mouralidarane A, Oben JA Medicine, 39: 592-596.
Soudamini, K.K., Unnikrishnan, M.C., Soni, K.B., Kuttan R., 1992. Inhibition of lipid peroxidation and cholesterol levels in mice by curcumin, Indian J. Physiol. Pharmacol, 36(4): 239-243.
Teramoto K., Bowers J.L., Khettry U., Palombo J.D, Clouse M.E., 1993. A rat fatty liver transplant model. Transplantation. 55(4): 737-741.
Thompson P.D., Clarkson P., Karas R.H., 2003. Statinassociated myopathy. JAMA , 289(13): 1681-1690.
Valko M., Leibfritz D., Moncol J., Cronin MT., Mazur M., Telser J., 2007. Free radicals and antioxidants in normal physiological functions and human disease. International of Journal of Biochemistry and Cell Biology, 39(1): 44-84.
Wang I.K., Lin-Shiau S.Y., Lin J.K., 1999. Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. European Journal of Cancer, 35(10): 1517-1525.
Watjen W., Michels G., Steffan B., Niering P., Chovolou Y., Kampkötter A., Tran-Thi Q.H, Proksch P., Kahl R., 2005. Low concentrations of flavonoids is protective in rat H4IIE cells whereas high concentrations cause DNA damage and apoptosis. Journal of Nutrition, 135(3): 525-531.
Yasni S., Imaizumi K., Nakamura M., Aimoto J., Sugano M., 1993. Effects of Curcuma xanthorrhiza Roxb and curcuminoids on the level of serum and liver lipids, serum apolipoprotein A-I and lipogenic enzymes in rats. Food Chemical Toxicology, 31(3): 213-218.
Younossi Z., 2008. Current management of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Alimentary Pharmacology and Therapeutics, 28(1): 2-12.
Yuan H.Y., Kuang S.Y., Zheng X., Ling H.Y., Yang Y.B., Yan P.K., Li K., Liao D.F., 2008. Curcumin inhibits cellular cholesterol accumulation by regulating SREBP-1/caveolin-1 signaling pathway in vascular smooth muscle cells. Acta Pharmacologica Sinica, 29(5): 555-563.
Zeisel S.H., 1994. Choline. In: Modern Nutrition in Health and Disease 8th edition.Edited by: Shils M., Olson J.A., Shike M. Philadelphia, Pa: Lea and Febiger, 449-458.
_||_