بررسی پتانسیل داربست چاپ سهبعدی پلی کاپرولاکتون پوشش داده شده با بیوسرامیکها در تکثیر و تمایز استخوانی سلولهای بنیادی مزانشیمی بافت چربی انسانی
محورهای موضوعی :
فصلنامه زیست شناسی جانوری
نسرین ّفاضلی
1
,
احسان عارفیان
2
,
شیوا ایرانی
3
,
عبدالرضا اردشیری لاجیمی
4
,
احسان سیدجعفری
5
1 - گروه زیستشناسی، دانشکده فناوری های همگرا، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه میکروبیولوژی، دانشکده زیست شناسی، پردیس علوم، دانشگاه تهران، تهران، ایران
3 - گروه زیست شناسی، دانشکده فناوری های همگرا، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
4 - مرکز تحقیقات سلول های بنیادی در مجاری ادراری و تناسلی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران
5 - گروه بیوتکنولوژی، پردیس علوم، دانشگاه تهران، تهران، ایران
تاریخ دریافت : 1401/12/08
تاریخ پذیرش : 1402/02/10
تاریخ انتشار : 1402/09/01
کلید واژه:
هیدروکسی آپاتیت,
مهندسی بافت استخوان,
شیشه زیستفعال,
پلی کاپرولاکتون,
چاپ سهبعدی,
چکیده مقاله :
در سال های اخیر، تمرکز تحقیقات در زمینه مهندسی بافت روی تهیه مواد و روشهای آماده سازی داربستها قرار دارد. چاپ سهبعدی، یک فناوری نوظهور است که میتواند با دقت و سرعت، داربستهای مهندسی بافت استخوان را با اشکال و ساختارهای خاص آماده کند. از متداول ترین روشهای چاپ سهبعدی، روش مدل سازی رسوب ذوب شده (FDM) است، مواد مورد استفاده در این روش پلیمرهایی مانند پلی کاپرولاکتون (PCL) میباشند. در این مطالعه داربستهای چاپ سهبعدی PCL ساخته شدند و با توجه به طبیعت آب گریز و غیر استئوژنیک پلی کاپرولاکتون، سطح داربستها با محلول 1% از بیوسرامیکهای هیدروکسی آپاتیت (HA) و شیشه زیستفعال (BG) پوشش داده شد. اصلاح سطح داربستهای PCL جهت افزایش آب دوستی و بهبود چسبندگی سلولی صورت گرفت. تصاویر میکروسکوپ الکترونی، آنالیز طیف سنجیپراشانرژیپرتو Xو نقشه برداری از عناصر سطح داربستها، پوشش مناسب داربستهای چاپ سهبعدی PCL با بیوسرامیک های هیدروکس آپاتیت و شیشه زیستفعال را تایید کرد. زیستسازگاری داربست PCL/HA/BG، زنده مانی و چسبندگی سلولها بر روی داربستها با کاشت سلولهای بنیادی مزانشیمی چربی انسانی (hAMSCs) و به وسیله آزمون MTT و تصاویر میکروسکوپ الکترونی بررسی شد. همچنین پتانسیل داربستهای PCL/HA/BG در تمایز استخوانی hAMSCs توسط آزمون های اندازه گیری فعالیت آلکالین فسفاتاز و رنگ آمیزی ایمونوسیتوشیمی بررسی شد. نتایج نشان داد که داربست سه جزئی PCL/HA/BG از رشد، تکثیر و تمایز استخوانی hAMSCs حمایت کرده است، بنابراین داربست مذکور میتواند کاندیدای مناسبی برای کاربردهای مهندسی بافت استخوان باشد.
چکیده انگلیسی:
In recent years, the focus of researches in the field of tissue engineering has been on the preparation of scaffold materials and methods. 3D printing is an emerging technology that can accurately and quickly prepare bone tissue engineering scaffolds with specific shapes and structures. One of the most common 3D printing methods is fused deposition modeling (FDM), the materials used in this method are polymers such as polycaprolactone (PCL). In this study, 3D printed PCL scaffolds were made and due to the hydrophobic and non-osteogenic nature of PCL, the surface of the scaffolds was coated with a 1% solution of hydroxyapatite (HA) and bioactive glass (BG) bioceramics. Surface modification of PCL scaffolds was done to increase hydrophilicity and improve cell attachment. Field emission scanning electron microscop (FeSEM) images, Energy-dispersive X-ray spectroscopy (EDS) and mapping of the surface elements of the scaffolds confirmed the proper coating of PCL scaffolds with HA and BG bioceramics. The biocompatibility of PCL/HA/BG scaffolds and the cell viability and attachment on the surface of the scaffolds were investigated by seeding of human adipose mesenchymal stem cells (hAMSCs) and using MTT test and FeSEM images. Also, the potential of PCL/HA/BG scaffolds in osteogenic differentiation of hAMSCs was evaluated by alkaline phosphatase activity measurement test and immunocytochemical staining. The results showed that the three-component PCL/HA/BG scaffolds improved the proliferation and osteogenic differentiation of hAMSCs, so the PCL/HA/BG scaffolds can be a suitable candidate for bone tissue engineering applications.
منابع و مأخذ:
Ardeshirylajimi A.; Farhadian S.; Jamshidi Adegani F.; Mirzaei S.; Soufi Zomorrod, M.; Langroudi, L.; Doostmohammadi A.; Seyedjafari, E.; Soleimani, M. 2015. Enhanced osteoconductivity of polyethersulphone nanofibres loaded with bioactive glass nanoparticles in in vitro and in vivo models. Cell Prolif., 48(4):455-464.
Billiet, T.; Gevaert, E.; De Schryver, T.; Cornelissen, M.; Dubruel, P. 2014. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, 35(1):49-62.
Chocholata, P.; Kulda, V.; Babuska, V. 2019. Fabrication of scaffolds for bone-tissue regeneration. Materials, 12(4):568.
Distler, T.; Fournier, N.; Grünewald, A.; Polley, C.; Seitz, H.; Detsch, R.; Boccaccini, A. R. 2020. Polymer-bioactive glass composite filaments for 3D scaffold manufacturing by fused deposition modeling: fabrication and characterization. Frontiers in bioengineering and biotechnology, 8:552.
Du, X.; Fu, S.; Zhu, Y. 2018. 3D printing of ceramic-based scaffolds for bone tissue engineering: an overview. Journal of Materials Chemistry B, 6(27):4397-4412.
Ebrahimi, Z.; Irani, S.; Ardeshirylajimi, A.; Seyedjafari, E. 2022. Enhanced osteogenic differentiation of stem cells by 3D printed PCL scaffolds coated with collagen and hydroxyapatite. Rep., 12(1):1-15.
Eltorai, A. E.; Nguyen, E.; Daniels, A. H. 2015. Three-dimensional printing in orthopedic surgery. Orthopedics, 38(11): 684-687.
Feng, X.; Wu, Y.; Bao, F.; Chen, X.; Gong, J. 2019. Comparison of 3D-printed mesoporous calcium silicate/polycaprolactone and mesoporous Bioacive glass/polycaprolactone scaffolds for bone regeneration. Microporous Mesoporous Mater., 278: 348-353.
Gao, G.; Schilling, A. F.; Yonezawa, T.; Wang, J.; Dai, G.; Cui, X. 2014. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three‐dimensional scaffold and human mesenchymal stem cells. J., 9 (10): 1304-1311.
Gerhardt, L.-C.; Boccaccini, A. R. 2010. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials, 3 (7): 3867-3910.
Grémare, A.; Guduric, V.; Bareille, R.; Heroguez, V.; Latour, S.; L'heureux, N.; Fricain, J. C.; Catros, S.; Le Nihouannen, D. 2018. Characterization of printed PLA scaffolds for bone tissue engineering. Journal of Biomedical Materials Research Part A, 106(4):887-894.
Guarino, V.; Ambrosio, L. 2010. Temperature-driven processing techniques for manufacturing fully interconnected porous scaffolds in bone tissue engineering. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224(12):1389-1400.
Jaidev, L.; Chatterjee, K. 2019. Surface functionalization of 3D printed polymer scaffolds to augment stem cell response. Materials & Design, 161: 44-54.
Jang, J.-H.; Castano, O.; Kim, H.-W. 2009. Electrospun materials as potential platforms for bone tissue engineering. Drug Del. Rev., 61(12):1065-1083.
Jensen, J.; Rölfing, J. H. D.; Svend Le, D. Q.; Kristiansen, A. A.; Nygaard, J. V.; Hokland, L. B.; Bendtsen, M.; Kassem, M.; Lysdahl, H.; Bünger, C. E. 2014. Surface‐modified functionalized polycaprolactone scaffolds for bone repair: In vitro and in vivo experiments. Journal of biomedical materials research Part A, 102(9):2993-3003.
Karimi, Z.; Seyedjafari, E.; Mahdavi, F. S.; Hashemi, S. M.; Khojasteh, A.; Kazemi, B.; Mohammadi‐Yeganeh, S. 2019. Baghdadite nanoparticle‐coated poly l‐lactic acid (PLLA) ceramics scaffold improved osteogenic differentiation of adipose tissue‐derived mesenchymal stem cells. Journal of Biomedical Materials Research Part A, 107(6):1284-1293.
Kim, J. W.; Lee, Y.; Seo, J.; Park, J. H.; Seo, Y. M.; Kim, S. S.; Shon, H. C. 2018. Clinical experience with three-dimensional printing techniques in orthopedic trauma. Orthop. Sci., 23(2):383-388.
Kumar, G.; Tison, C. K.; Chatterjee, K.; Pine, P. S.; McDaniel, J. H.; Salit, M. L.; Young, M. F.; Simon Jr, C. G. 2011. The determination of stem cell fate by 3D scaffold structures through the control of cell shape. Biomaterials, 32(35):9188-9196.
Lee, S. J.; Lee, D.; Yoon, T. R.; Kim, H. K.; Jo, H. H.; Park, J. S.; Lee, J. H.; Kim, W. D.; Kwon, I. K.; Park, S. A. 2016. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Acta Biomater., 40:182-191.
Li, C.; Liu, D.; Zhang, Z.; Wang, G.; Xu, N. 2013. Triple point-mutants of hypoxia-inducible factor-1α accelerate in vivo angiogenesis in bone defect regions. Cell Biochem. Biophys., 67:557-566.
Ma, J.; Lin, L.; Zuo, Y.; Zou, Q.; Ren, X.; Li, J.; Li, Y. 2019. Modification of 3D printed PCL scaffolds by PVAc and HA to enhance cytocompatibility and osteogenesis. RSC advances, 9(10):5338-5346.
Mondal, S.; Nguyen, T. P.; Hoang, G.; Manivasagan, P.; Kim, M. H.; Nam, S. Y.; Oh, J. 2020. Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application. Int., 46(3): 3443-3455.
Seebach, C.; Henrich, D.; Wilhelm, K.; Barker, J.; Marzi, I. 2012. Endothelial progenitor cells improve directly and indirectly early vascularization of mesenchymal stem cell-driven bone regeneration in a critical bone defect in rats. Cell Transplant., 21(8):1667-1677.
Shahin-Shamsabadi, A.; Hashemi, A.; Tahriri, M.; Bastami, F.; Salehi, M.; Abbas, F. M. 2018. Mechanical, material, and biological study of a PCL/bioactive glass bone scaffold: Importance of viscoelasticity. Materials Science and Engineering: C, 90: 280-288.
Sultan, S.; Thomas, N.; Varghese, M.; Dalvi, Y.; Joy, S.; Hall, S.; Mathew, A. P. 2022. The Design of 3D-Printed Polylactic Acid–Bioglass Composite Scaffold: A Potential Implant Material for Bone Tissue Engineering. Molecules, 27(21):7214.
Wang, C.; Huang, W.; Zhou, Y.; He, L.; He, Z.; Chen, Z.; He, X.; Tian, S.; Liao, J.; Lu, B. 2020. 3D printing of bone tissue engineering scaffolds. Bioactive materials, 5 (1):82-91.
Wang, Q.; Wang, Q.; Wan, C. 2012. Preparation and evaluation of a biomimetic scaffold with porosity gradients in vitro. Acad. Bras. Cienc., 84:9-16.
Wang, X.; Yan, Y.; Pan, Y.; Xiong, Z.; Liu, H.; Cheng, J.; Liu, F.; Lin, F.; Wu, R.; Zhang, R. 2006. Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng., 12(1):83-90.
Wei, Q.; Wang, Y.; Chai, W.; Zhang, Y.; Chen, X. 2017. Molecular dynamics simulation and experimental study of the bonding properties of polymer binders in 3D powder printed hydroxyapatite bioceramic bone scaffolds. Int., 43(16):13702-13709.
Xie, L.; Chen, C.; Zhang, Y.; Zheng, W.; Chen, H.; Cai, L. 2018. Three-dimensional printing assisted ORIF versus conventional ORIF for tibial plateau fractures: A systematic review and meta-analysis. International Journal of Surgery, 57:35-44.
Yuan, Q.; Qin, C.; Wu, J.; Xu, A.; Zhang, Z.; Liao, J.; Lin, S.; Ren, X.; Zhang, P. 2016. Synthesis and characterization of Cerium-doped hydroxyapatite/polylactic acid composite coatings on metal substrates. Materials Chemistry and Physics, 182:365-371.
Zhang, Q.; Zhou, J.; Zhi, P.; Liu, L.; Liu, C.; Fang, A.; Zhang, Q. 2023. 3D printing method for bone tissue engineering scaffold. Medicine in Novel Technology and Devices: 100205.
Zimmerling, A.; Yazdanpanah, Z.; Cooper, D. M.; Johnston, J. D.; Chen, X. 2021. 3D printing PCL/nHA bone scaffolds: Exploring the influence of material synthesis techniques. Biomaterials Research, 25(1): 1-12.
_||_