بررسی عملکردی اثر فاکتور رونویسی EZH2 بر بیان مارکر β-catenin در رده سلولی کارسینومای سلولهای سنگفرشی مری YM-1
محورهای موضوعی :
فصلنامه زیست شناسی جانوری
فاطمه نورمحمدی
1
,
محمد مهدی فرقانی فرد
2
,
وجیهه زرین پور
3
,
محمدرضا عباس زادگان
4
1 - گروه زیست شناسی، واحد دامغان، دانشگاه آزاد اسلامی، دامغان، ایران
2 - گروه زیست شناسی، واحد دامغان، دانشگاه آزاد اسلامی، دامغان، ایران
3 - گروه زیست شناسی، واحد دامغان، دانشگاه آزاد اسلامی، دامغان، ایران
4 - مرکز تحقیقات ژنتیک پزشکی، دانشکده علوم پزشکی مشهد، مشهد، ایران
تاریخ دریافت : 1402/05/01
تاریخ پذیرش : 1402/05/09
تاریخ انتشار : 1402/12/01
کلید واژه:
بتا-کاتنین,
سرطان سلولهای سنگفرشی مری,
EZH2,
shRNA,
چکیده مقاله :
سرطان مری به عنوان ششمین عامل مرگ و میر در اثر سرطان در جهان و هشتمین سرطان شایع در جهان میباشد. از شاخص ترین ویژگی های این سرطان مقاومت به شیمی-رادیو تراپی و درصد بالای عود مجدد در بیماران میباشد. مارکر بتا-کاتنین یکی از اصلی ترین عوامل متاستاز و تهاجم در بیماران میباشند. ژن EZH2 یک فاکتور تنطیمی بیان ژن بوده و تکثیر سلولهای تومور را افزایش میدهد و پرتوانی سلولهای بنیادی را حفظ میکند. EZH2 به طور غیرطبیعی در انواع سرطانهای بدخیم بیان میشود. بتا-کاتنین یک جزء ساختاری از اتصالات چسبنده به همراه کادهرین و عامل اصلی سیگنال دهی مسیر Wnt در هسته است. بیان نابجای بتا-کاتنین (β-catenin) اغلب منجر به سرطان و متاستاز میشود. در این مطالعه وکتور خاموشسازی ژن EZH2 در باکتری اشرشیا کولی کلون و سپس استخراج شده و در سلولهای رده سرطانی مری YM-1 ژن EZH2 خاموش شده است. سپس استخراج RNA و سنتز cDNA پس از تایید خاموشسازی ژن EZH2 بیان بتا-کاتنین با استفاده از تکنیک Real-time PCR مورد ارزیابی قرار گرفت. تست سلولی مهاجرت سلولی برای بررسی سرعت تهاجم سلولها بعد از دستکاری ژنتیکی استفاده شد. نتایج، کاهش بیان بتا-کاتنین را در رده های سلولی تحت القای خاموشسازی EZH2 نشان داد. خاموشسازی EZH2 بطور معنی داری میزان رشد و مهجرت سلولهای سرطانی مری را کاهش داد. نتایج حاکی از نقش ژن EZH2 در تنظیم بیان ژن بتا-کاتنین در سرطان سلولهای سنگفرشی مری میباشد. با توجه به این که انتشار تومور یکی از مهمترین عوامل بدخیمی سرطانESCC میباشد و از طرفی این ویژگی های سرطان مری به علت متاستاز و تهاجم موجب مرگ زودرس بیماران می گردد، یافتن مارکر موثر در کنترل سلولهای بنیادین سرطانی میتواند نویدبخش درمان بیماران ESCC باشد.
چکیده انگلیسی:
Esophageal cancer is the sixth cause of cancer death in the world and the eighth most common cancer in the world. One of the most characteristic features of this cancer is the resistance to chemo-radiotherapy and the high percentage of recurrence in patients. Beta-catenin marker is one of the main factors of metastasis and invasion in patients. EZH2 gene is a regulatory factor of gene expression and increases the proliferation of tumor cells and maintains the pluripotency of stem cells. EZH2 is aberrantly expressed in a variety of malignant cancers. β-Catenin is a structural component of adherens junctions along with cadherin and the main signaling agent of the Wnt pathway in the nucleus. Aberrant expression of beta-catenin often leads to cancer and metastasis. In this study, the EZH2 gene silencing vector was cloned in Escherichia coli bacteria and then extracted, and the EZH2 gene was silenced in YM-1 esophageal cancer cells. Then RNA extraction and cDNA synthesis were evaluated after confirming EZH2 gene silencing, beta-catenin expression using Real-time PCR technique. Cell migration test was used to check the invasion rate of cells after genetic manipulation. The results showed a decrease in beta-catenin expression in cell lines induced by EZH2 silencing. EZH2 silencing significantly reduced the growth and migration rate of esophageal cancer cells. The results indicate the role of EZH2 gene in regulating beta-catenin gene expression in esophageal squamous cell cancer. Considering that tumor spread is one of the most important factors in the malignancy of ESCC cancer, and on the other hand, these features of esophageal cancer cause premature death of patients due to metastasis and invasion, finding an effective marker in controlling cancer stem cells can be promising for the treatment of ESCC patients.
منابع و مأخذ:
Abbaszadegan M.R. Bagheri V., Razavi M.S., Momtazi A.A., Sahebkar A., Gholamin M. 2017. Isolation, identification, and characterization of cancer stem cells: A review. Journal of Cellular Physiology, 232(8):2008-2018.
Abnet C.C., Arnold M., Wei, W.Q. 2018. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology 154:360-373.
Azbazdar Y., Karabicici M. 2021. Regulation of Wnt signaling pathways at the plasma membrane and their misregulation in cancer. Frontiers in Cell and Developmental Biology, 9:631623.
Balzer E.M., Konstantopoulos K., 2012. Intercellular adhesion: mechanisms for growth and metastasis of epithelial cancers. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 4(2):171-181.
Baskaran N.U., Rajendiran A.M.S. 2020. 506 to study the clinical impact and prognostic value of tumor infiltrating Lymphocyts in esophageal squamous cell carcinoma. Diseases of the Esophagus, 33(1):1-4.
Bertrade C., Mbom W., Nelson J., 2013. β-catenin: A multi-functional protein’s role at the centrosome and implications for a broader role in cell division. Bioessays, 35(9):804–809.
Bu J., Gu L., Liu X., Nan X., Zhang X., Meng L., Zheng Y., Liu F., Li J., Li Z., Sang M., Shan B. 2022. The circRNA circADAMTS6 promotes progression of ESCC and correlates with prognosis. Scientific Reports, 12(1):13757.
Fiera Costa E., Delgado Roel M, Paradela de la Morena M. 2019. Atlas of Uniportal Video Assisted Thoracic Surgery, pp: 109-114.
Ganji A., Esmaeilzadeh A., Hatef M. 2012. Prevalence of osteopenia and osteoporosis in patients with celiac disease in northeastern Iran. Govaresh, 16:223-227.
Gopalkrishna Pai S., Carneiro B.A., 2017. Wnt/beta-catenin pathway: modulating anticancer immune response. Journal of Hematology and Oncology, 10:101
Hagen T., Vidal-Puig A. 2002. Characterisation of the phosphorylation of beta-catenin at the GSK-3 priming site Ser45. Biochemical and Biophysical Research Communications, 294(2):324-328.
He L., Liu M.Z. 2010. High expression of EZH2 is associated with tumor aggressiveness and poor prognosis in patients with esophageal squamous cell carcinoma treated with definitive chemoradiotherapy. International Journal of Cancer, 127(1):138-47.
Jipping K.M., Hulshoff J.B., van Amerongen E.A., Bright T.I., Watson D.I., Plukker J.T.M. 2017. Influence of tumor response and treatment schedule on the distribution of tumor recurrence in esophageal cancer patients treated with neoadjuvant chemoradiotherapy. Journal of Surgical Oncology, 116(8):1096-1102.
Kim E., Kim M., Woo D.H., Shin Y., Shin J., Chang N., Oh Y.T., Kim H., Rheey J., Nakano I., Lee C., Joo K.M., Rich J.N., Nam D.H., Lee J. 2013. Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell, 23(6):839-852.
Kim K.H., Roberts C.W. 2016. Targeting EZH2 in cancer. Nature Medicine, 22(2):128-134.
Kim W.K., Kwon Y., Jang M., Park M., Kim J., Cho S., Jang D.G., Lee W.B., Jung S.H., Choi H.J., Min B.S., Il Kim T., Hong S.P., Paik Y.K., Kim H. 2019. β-catenin activation down-regulates cell-cell junction-related genes and induces epithelial-to-mesenchymal transition in colorectal cancers. Scientific Reports, 9(1):18440.
Liu B., Wang C., Chen P., Cheng B., Cheng, Y. 2018. RACKI induces chemotherapy resistance in esophageal carcinoma by upregulating the PI3K/AKT pathway and Bcl-2 expression. Onco Targets and Therapy, 11:211-220.
Liu J., Xiao Q., Xiao J., Niu C., Li Y., Zhang X., Zhou Z., Shu G., Yin G. 2022. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduction and Target Therapy, 7(1):3.
Loh C.Y., Yi Chai J. 2019. The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges. Cells, 8(10):1118.
Mahara, Lee P.L., Feng M., Tergaonkar V., Chng W.J., Yu Q. 2016. HIFI-α activation underlies a functional switch in the paradoxical role of Ezh2/PRC2 in breast cancer. Proceedings of the National Academy of Sciences, 113(26):E3735-E3744.
Meguid R.A., Hooker C.M., Taylor J.T., Kleinberg L.R., Cattaneo S.M., Sussman M.S., Yang S.C., Heitmiller R.F., Forastiere A.A., Brock MV. 2009. Recurrence after neoadjuvant chemoradiation and surgery for esophageal cancer: does the pattern of recurrence differ for patients with complete response and those with partial or no response. The Journal of Thoracic and Cardiovascular Surgery, 138(6):1309-1317.
Orsulic , Huber O., Aberle H., Arnold S., Kemler R. 1999. E-cadherin binding prevents beta-catenin nuclear localization and beta-catenin/LEF-1-mediated transactivation. Journal of Cell Sciences, 112(Pt 8):1237-1245.
Sadjadi A., Marjani H., Semnani S., Naseri-Moghaddam S. 2010. Esophageal cancer in Iran: A review. Middle East Journal of Cancer, 1(1):5-14
Shang S., Hua F. 2017. The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget, 8(20):33972-33989.
Valenta T., Hausmann G. 2012. The many faces and functions of β-catenin. EMBO Journal, 31(12): 2714-2736.
Vallböhmer D., Hölscher A.H., DeMeester S., DeMeester T., Salo J., Peters J., Lerut T., Swisher S.G., Schröder W., Bollschweiler E., Hofstetter W. 2010. A multicenter study of survival after neoadjuvant radiotherapy/chemotherapy and esophagectomy for ypT0N0M0R0 esophageal cancer. Annals of surgery, 252(5):744-749.
van der Wal T., van Amerongen R. 2020. Walking the tight wire between cell adhesion and WNT signalling: a balancing act for β-catenin. Open Biology, 10(12): 200267.
Wang Y., Zhou B.P., 2011. Epithelial-mesenchymal transition in breast cancer progression and metastasis. Chinese Journal of Cancer, 30(9):603-611.
Wang , Zhu X., Hu J., He G., Li X., Wu P., Ren X., Wang F., Liao W., Liang L., Ding Y. 2015. The positive feedback between Snail and DAB2IP regulates EMT, invasion and metastasis in colorectal cancer. Oncotarget, 6(29):27427.
Wang W., Qin J.J. 2015. Polycomb group (PcG) proteins and human cancers: multifaceted functions and therapeutic implications. Medicinal Research Reviews, 35(6):1220-1267.
Wang B., Li X., Liu L., Wang M. 2020. β-Catenin: oncogenic role and therapeutic target in cervical cancer. Biological Research, 53(1):33.
Wen Y., Cai J., Hou Y., Huang Z., Wang Z. 2017. Role of EZH2 in cancer stem cells: from biological insight to a therapeutic target. Oncotarget, 8:37974.
Xu K., Wu Z.J., Groner A.C., He H.H., Cai C., Lis R.T., Wu X., Stack E.C., Loda M., Liu T., Xu H., Cato L., Thornton J.E., Gregory R.I., Morrissey C., Vessella R.L., Montironi R., Magi-Galluzzi C., Kantoff P.W., Balk S.P., Liu X.S., Brown M. 2012. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb independent. Science, 338(6113):1465-1469.
Yao Y., Hu H., Yang Y., Zhou G., Shang Z., Yang X., Sun K., Zhan S., Yu Z., Li P., Pan G., Sun L., Zhu X., He S. 2016. Downregulation of enhancer of zeste homolog 2 (EZH2) is essential for the induction of autophagy and apoptosis in colorectal cancer cells. Genes, 7(10):83.
Yasuda H., Soejima K., Watanabe H., Kawada I., Nakachi I., Yoda S., Nakayama S., Satomi R., Ikemura S., Terai H., Sato T., Suzuki S., Matsuzaki Y., Naoki K., Ishizaka A. 2010. Distinct epigenetic regulation of tumor suppressor genes in putative cancer stem cells of solid tumors. International Journal of Oncology, 37(6):1537-1546.
Yi X., Guo J., Guo J., Sun S., Yang P., Wang J., Li Y., Xie L., Cai J., Wang Z. 2017. EZH2-mediated epigenetic silencing of TIMP2 promotes ovarian cancer migration and invasion. Scientific Reports, 7(1):3568.
Yokoya F., Imamoto N. 1999. β-catenin can be transported into the nucleus in a ran-unassisted manner. Molecular Biology of the Cell, 10(4):1119-1131.
You B., Yoon J. 2019. HERES a lncRNA that regulates canonical and noncanonical Wnt signaling pathways via interaction with EZH2. Proceedings of the National Academy of Sciences of the United States of America, 116(49):24620-24629.
Yu F., Yu C., Li F., Zuo Y., Wang Y., Yao L., Wu C., Wang C., Ye L. 2021. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduction and Target Therapy, 6(1):307.
Zhao H., Ming T., Tang S., Ren S., Yang H., Liu M., Tao Q., Xu H. 2022. Wnt signaling in colorectal cancer: pathogenic role and therapeutic target. Molecular Cancer, 21(1):144.
_||_