راندمان سلولهای سرتولی در مسیر اسپرماتوژنز: یک مطالعه ی مروری
محورهای موضوعی :
فصلنامه زیست شناسی جانوری
محمدجاوید اکبریان
1
,
حسین عزیزی
2
1 - گروه زیست شناسی، دانشکده علوم پایه، دانشگاه مراغه، مراغه، ایران
2 - گروه زیست نانوفناوری، دانشکده زیست فناوری، دانشگاه تخصصی فناوریهای نوین آمل، آمل، ایران
تاریخ دریافت : 1402/03/15
تاریخ پذیرش : 1402/04/28
تاریخ انتشار : 1402/12/01
کلید واژه:
بیضه,
اسپرماتوژنز,
سلولهای سوماتیک,
سلولهای سرتولی,
چکیده مقاله :
روزانه بیش از 100 میلیون اسپرم به وسیله دستگاه تولیدمثلی جنس نر تولید میشود که هدف نهایی آن تولیدمثل و باروری در جنس نر است. هنگام شکل گیری جنین، سلولهای زایا بدوی به بیضه ها مهاجرت میکنند و به سلولهای زایا نابالغ به نام اسپرماتوگونی تبدیل میشوند و سیر تکامل را تا تبدیل شدن به یک اسپرم بالغ طی میکنند که اصطلاحاً این سیر تکاملی اسپرماتوژنز نام دارد. اسپرماتوژنز صحیح و در نتیجه باروری موثر به عوامل مختلفی از جمله راندمان سلولهای سرتولی بستگی دارد. حاصل مطالعات محققان نشان دهنده رابطه مستقیم مورفولوژیک این سلولها با سلولهای زاینده است و اهمیت این سلولهای سوماتیک درون لولههای اسپرم ساز را به خوبی نشان میدهد. اولین بررسی های ساختاری و احتمالات در رابطه با عملکرد این سلولها به بیش از 150 سال پیش برمی گردد. زمانی که انریکو سرتولی 23 ساله برای اولین بار ساختار این سلولهای سوماتیک را مورد ارزیابی قرار داد. نتیجه سال ها تحقیق و پژوهش محققان در رابطه با عملکرد و اثرات متفاوت این سلولها کمک بسیاری در حوضه مطالعاتی ناباروری کرده است و همین امر موجب توجه بیشتر به مکانیسمهای حاکم بر عملکرد صحیح فیزیولوژیک این سلولها و واکاوی چرایی اختلال در آن گشته است تا شاید بتوان با درک بهتر ویژگی ها و عملکرد سلولهای سرتولی، گامی موثر جهت درمان اختلالات در باروری مردان برداشت .
چکیده انگلیسی:
Over 100 million sperm are daily produced by the male reproductive system for the purpose of reproduction and fertility in male gender. During embryonic development, primordial germ cells migrate to the testes and transform into undifferentiated germ cells called spermatogonia, which are destined to develop into mature sperm through a process called spermatogenesis. Successful spermatogenesis and thus efficient fertility are dependent upon various factors, including Sertoli cell efficiency. Studies have reported a direct correlation between the morphology of Sertoli and germ cells indicating the importance of these somatic cells inside the spermatogenic tubes. The first structural investigations and possibilities about the function of these cells date back over 150 years when 23-year-old Enrico Sertoli first assessed the structure of these somatic cells. The results of years of research on various functions and effects of these cells have contributed significantly to studies on infertility. This has drawn more attention to the characteristics and mechanisms of physiological action of Sertoli cells, as well as the analysis of disorders related to them so that an effective step can be taken in the treatment of male fertility problems.
منابع و مأخذ:
Al-Sharkawi, M., Calonga-Solís, V., Dressler, F. F., Busch, H., Hiort, O., Werner, R. 2023. Persistence of foetal testicular features in patients with defective androgen signalling. European Journal of Endocrinology, 188(1): lvad007.
Alves, M. G., Rato, L., Carvalho, R. A., Moreira, P. I., Socorro, S., Oliveira, P. F. 2013. Hormonal control of Sertoli cell metabolism regulates spermatogenesis. Cellular and Molecular Life Sciences, 70:777-793.
Assinder, S. J., Carey, M., Parkinson, T., Nicholson, H. D. 2000. Oxytocin and vasopressin expression in the ovine testis and epididymis: changes with the onset of spermatogenesis. Biology of Reproduction, 63(2):448-456.
Azizi, H., Asgari, B., Skutella, T. 2019. Pluripotency potential of embryonic stem cell-like cells derived from mouse testis. Cell Journal (Yakhteh), 21(3):281.
Azizi, H., Conrad, S., Hinz, U., Asgari, B., Nanus, D., Peterziel, H., Skutella, T. 2016. Derivation of pluripotent cells from mouse SSCs seems to be age dependent. Stem cells International, 2016:8216312
Azizi, H., Conrad, S., Skutella, T., Virant-Klun, I. 2012. Spermatogonial Stem Cells. Advances in Stem Cell Research, 191-210.
Azizi, H., Hamidabadi, H. G., Skutella, T. 2019. Differential proliferation effects after short-term cultivation of mouse spermatogonial stem cells on different feeder layers. Cell Journal (Yakhteh), 21(2), 186.
Azizi, H., Niazi Tabar, A., Skutella, T. 2021. Successful transplantation of spermatogonial stem cells into the seminiferous tubules of busulfan-treated mice. Reproductive Health, 18:1-9.
Azizi, H., NiaziTabar, A., Mohammadi, A., Skutella, T. 2021. Characterization of DDX4 gene expression in human cases with non-obstructive azoospermia and in sterile and fertile mice. Journal of Reproduction and Infertility, 22(2):85.
Azizi, H., Shahverdi, A., Hosseinzadeh Colagar, A. 2018. Investigation of Spermatogonial Stem Cells in Adherent and Non-Adherent Culture. Cellular and Molecular Research (Iranian Journal of Biology), 31(3): 337-347.
Azizi, H., Skutella, T., Shahverdi, A. 2017. Generation of mouse spermatogonial stem-cell-colonies in a non-adherent culture. Cell Journal (Yakhteh), 19(2):238.
Azizi, H., Tabar, A. N., Skutella, T., Govahi, M. 2020. In vitro and in vivo determinations of the anti-GDNF family receptor alpha 1 antibody in mice by immunochemistry and RT-PCR. International Journal of Fertility and Sterility, 14(3):228.
Berger, T., Nitta-Oda, B.J. 2018. Increased testicular estradiol during the neonatal interval reduces Sertoli cell numbers. Animal Reproduction Science, 189:146-151.
Chen, H., Mruk, D., Xiao, X., Cheng, C. Y. 2017. Human spermatogenesis and its regulation. Male Hypogonadism: Basic, Clinical and Therapeutic Principles, 49-72.
Costa, G. M. J., Figueiredo, A. F. A., de França, L. R. 2019. The Sertoli cell: what can we learn from different vertebrate models?. Animal Reproduction, 16(1):81.
Crisóstomo, L., Alves, M. G., Gorga, A., Sousa, M., Riera, M. F., Galardo, M.N., Oliveira, P. F. 2018. Molecular mechanisms and signaling pathways involved in the nutritional support of spermatogenesis by Sertoli cells. Sertoli Cells: Methods and Protocols, 1748:129-155.
Fleck, D., Kenzler, L., Mundt, N., Strauch, M., Uesaka, N., Moosmann, R., Spehr, M. 2021. ATP activation of peritubular cells drives testicular sperm transport. Elife, 10:e62885.
Fofana, M., Maboundou, J. C., Bocquet, J., Goff, D. L. 1996. Transfer of cholesterol between high density lipoproteins and cultured rat Sertoli cells. Biochemistry and Cell Biology, 74(5):681-686.
Fofana, M., Travert, C., Carreau, S., Le Goff, D. 2000. Evaluation of cholesteryl ester transfer in the seminiferous tubule cells of immature rats in vivo and in vitro. Journal of Reproduction and Fertility, 118(1):79-84.
França, L. R., Hess, R. A., Dufour, J. M., Hofmann, M. C., Griswold, M. 2016. The Sertoli cell: one hundred fifty years of beauty and plasticity. Andrology, 4(2):189-212.
Frayne, J., Nicholson, H. D. 1995. Effect of oxytocin on testosterone production by isolated rat Leydig cells is mediated via a specific oxytocin receptor. Biology of Reproduction, 52(6):1268-1273.
Fröjdman, K., Harley, V. R., Pelliniemi, L. J. 2000. Sox9 protein in rat sertoli cells is age and stage dependent. Histochemistry and Cell Biology, 113:31-36.
Gow, A., Southwood, C. M., Li, J. S., Pariali, M., Riordan, G. P., Brodie, S. E., Lazzarini, R. A. 1999. CNS myelin and sertoli cell tight junction strands are absent in Osp/claudin-11 null mice. Cell, 99(6): 649-659.
Grinspon, R. P., Urrutia, M., Rey, R. A. 2018. Male central hypogonadism in paediatrics–the relevance of follicle-stimulating hormone and sertoli cell markers. European Endocrinology, 14(2): 67.
Griswold, M. D. 1998. The central role of Sertoli cells in spermatogenesis. In Seminars in Cell and Developmental Biology, 9(4):411-416.
Griswold, M. D. 2018. 50 years of spermatogenesis: Sertoli cells and their interactions with germ cells. Biology of Reproduction, 99(1):87-100.
Guan, X., Chen, F., Chen, P., Zhao, X., Mei, H., Liu, J., Chen, H. 2019. Effects of spermatogenic cycle on Stem Leydig cell proliferation and differentiation. Molecular and Cellular Endocrinology, 481:35-43.
Hai, Y., Hou, J., Liu, Y., Liu, Y., Yang, H., Li, Z., He, Z. 2014. The roles and regulation of Sertoli cells in fate determinations of spermatogonial stem cells and spermatogenesis. In Seminars in Cell and Developmental Biology, 29:66-75.
Hall, J. E., Hall, M. E. 2020. Guyton and Hall textbook of medical physiology e-Book. Elsevier Health Sciences.
Heinrich, A., Bhandary, B., Potter, S.J., Ratner, N., DeFalco, T. 2021. Cdc42 activity in Sertoli cells is essential for maintenance of spermatogenesis. Cell Reports, 37(4): 109885.
Heinrich, A., Potter, S. J., Guo, L., Ratner, N., DeFalco, T. 2020. Distinct roles for Rac1 in sertoli cell function during testicular development and spermatogenesis. Cell Reports, 31(2):107513.
Idrees, M., Oh, S.H., Muhammad, T., El-Sheikh, M., Song, S. H., Lee, K. L., Kong, I. K. 2020. Growth factors, and cytokines; understanding the role of tyrosine phosphatase SHP2 in gametogenesis and early embryo development. Cells, 9(8): 1798.
Klip, A., Tsakiridis, T., Marette, A., Ortiz, P. A. 1994. Regulation of expression of glucose transporters by glucose: a review of studies in vivo and in cell cultures. The FASEB Journal, 8(1):43-53.
Looyenga, B. D., Hammer, G. D. 2007. Genetic removal of Smad3 from inhibin-null mice attenuates tumor progression by uncoupling extracellular mitogenic signals from the cell cycle machinery. Molecular Endocrinology, 21(10):2440-2457.
Maher, G. J., Goriely, A. 2020. Teasing apart the multiple roles of Shp2 (Ptpn11) in spermatogenesis. Asian Journal of Andrology, 22(1):122.
Martin, L. J. 2016. Cell interactions and genetic regulation that contribute to testicular Leydig cell development and differentiation. Molecular Reproduction and Development, 83(6):470-487.
Mehdinezhad Roshan, M., Azizi, H. 2023. Advanced isolation, expansion and characterization research study on pig testicular cells during differentiation and proliferation. Animal Biotechnology, 2023:1-8.
Meinhardt, A., Hedger, M. P. 2011. Immunological, paracrine and endocrine aspects of testicular immune privilege. Molecular and Cellular Endocrinology, 335(1):60-68.
Naughton, C. K., Jain, S., Strickland, A. M., Gupta, A., Milbrandt, J. 2006. Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate. Biology of Reproduction, 74(2):314-321.
Nebel, A., Flachsbart, F., Till, A., Caliebe, A., Blanché, H., Arlt, A., Schreiber, S. 2009. A functional EXO1 promoter variant is associated with prolonged life expectancy in centenarians. Mechanisms of Ageing and Development, 130(10):691-699.
O’Donnell, L., Smith, L.B., Rebourcet, D. 2022. Sertoli cells as key drivers of testis function. Seminars in Cell and Developmental Biology, 121:2-9.
Ogura, A., Inoue, K., Wakayama, T. 2013. Recent advancements in cloning by somatic cell nuclear transfer. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1609):20110329.
Parekh, P.A., Garcia, T.X., Hofmann, M. C. 2019. Regulation of GDNF expression in Sertoli cells. Reproduction, 157(3):R95-R107.
Park, H.J., Lee, W.Y., Kim, J.H., Park, C., Song, H. 2018. Expression patterns and role of SDF-1/CXCR4 axis in boar spermatogonial stem cells. Theriogenology, 113:221-228.
Princen, F., Bard, E., Sheikh, F., Zhang, S. S., Wang, J., Zago, W.M., Feng, G.S. 2009. Deletion of Shp2 tyrosine phosphatase in muscle leads to dilated cardiomyopathy, insulin resistance, and premature death. Molecular and Cellular Biology, 29(2):378-388.
Puri, P., Walker, W. H. 2016. The regulation of male fertility by the PTPN11 tyrosine phosphatase. Seminars in Cell and Developmental Biology, 59:27-34.
Rebourcet, D., Wu, J., Cruickshanks, L., Smith, S. E., Milne, L., Fernando, A., Smith, L. B. 2016. Sertoli cells modulate testicular vascular network development, structure, and function to influence circulating testosterone concentrations in adult male mice. Endocrinology, 157(6): 2479-2488.
Shi, J.F., Li, Y.K., Ren, K., Xie, Y.J., Yin, W.D., Mo, Z.C. 2018. Characterization of cholesterol metabolism in Sertoli cells and spermatogenesis. Molecular Medicine Reports, 17(1):705-713.
Shima, Y., Miyabayashi, K., Haraguchi, S., Arakawa, T., Otake, H., Baba, T., Morohashi, K.I. 2013. Contribution of Leydig and Sertoli cells to testosterone production in mouse fetal testes. Molecular Endocrinology, 27(1):63-73.
Sipilä, P., Junnila, A., Hakkarainen, J., Huhtaniemi, R., Mairinoja, L., Zhang, F. P., Poutanen, M. 2020. The lack of HSD17B3 in male mice results in disturbed Leydig cell maturation and endocrine imbalance akin to humans with HSD17B3 deficiency. The FASEB Journal, 34(5):6111-6128.
Skinner, M. K., Griswold, M. D. (Eds.). 2004. Sertoli cell biology. Elsevier.
Skinner, M.K., McLachlan, R.I., Bremner, W.J. 1989. Stimulation of Sertoli cell inhibin secretion by the testicular paracrine factor PModS. Molecular and Cellular Endocrinology, 66(2):239-249.
Sojoudi, K., Azizi, H., Skutella, T. 2023. A Fundamental Research in In Vitro Spermatogonial Stem Cell Culturing: What Are Clump Cells? Cellular Reprogramming, 25(2): 65-72.
Sylvester, S.R., Griswold, M.D. 1994. The testicular iron shuttle: a “nurse” function of the Sertoli cells. Journal of Andrology, 15(5):381-385.
Valeri, C., Lovaisa, M.M., Racine, C., Edelsztein, N.Y., Riggio, M., Giulianelli, S., Rey, R.A. 2020. Molecular mechanisms underlying AMH elevation in hyperoestrogenic states in males. Scientific Reports, 10(1):15062.
Wang, Y. Q., Chen, S. R. 2018. Selective deletion of WLS in peritubular myoid cells does not affect spermatogenesis or fertility in mice. Molecular Reproduction and Development, 85(7):559-561.
Welsh, M., Saunders, P.T., Atanassova, N., Sharpe, R.M., Smith, L.B. 2009. Androgen action via testicular peritubular myoid cells is essential for male fertility. The FASEB Journal, 23(12):4218.
Wen, Q., Zheng, Q. S., Li, X. X., Hu, Z. Y., Gao, F., Cheng, C. Y., Liu, Y. X. 2014. Wt1 dictates the fate of fetal and adult Leydig cells during development in the mouse testis. American Journal of Physiology-Endocrinology and Metabolism, 307(12):E1131-E1143.
Zanatta, A. P., Gonçalves, R., Zanatta, L., de Oliveria, G. T., Moraes, A. L. L., Zamoner, A., Silva, F.R.M.B. 2019. New ionic targets of 3, 3′, 5′-triiodothyronine at the plasma membrane of rat Sertoli cells. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1861(4):748-759.
Zhang, Y., Lui, W.Y. 2023. CXADR: From an Essential Structural Component to a Vital Signaling Mediator in Spermatogenesis. International Journal of Molecular Sciences, 24(2):1288.
Zheng, Y., Gao, Q., Li, T., Liu, R., Cheng, Z., Guo, M., Zeng, W. 2022. Sertoli cell and spermatogonial development in pigs. Journal of Animal Science and Biotechnology, 13(1):45.
Zhou, R., Wu, J., Liu, B., Jiang, Y., Chen, W., Li, J., He, Z. 2019. The roles and mechanisms of Leydig cells and myoid cells in regulating spermatogenesis. Cellular and Molecular life Sciences, 76: 2681-2695.
Zhuang, M., Li, B., Huang, Y., Lei, Q., Yan, R., Li, N., Hua, J. 2019. Reelin regulates male mouse reproductive capacity via the sertoli cells. Journal of Cellular Biochemistry, 120(2):1174-1184.
Zirkin, B. R., Papadopoulos, V. 2018. Leydig cells: formation, function, and regulation. Biology of Reproduction, 99(1): 101-111.
_||_