ارزیابی سایشی لایه سطحی نانوکامپوزیت هیبریدیAl7075/SiC-BN تشکیل شده توسط روش همزن اصطکاکی
محورهای موضوعی : عملیات حرارتیمحمود سلیمانی 1 , سیدفرشید کاشانی بزرگ 2 , علی محمد هادیان 3
1 - دانشجوی کارشناسی ارشد، دانشکده مهندسی متالورژی و مواد، پردیس دانشکدههای فنی دانشگاه تهران
2 - دانشیار، قطب علمی مهندسی سطح و حفاظت از خوردگی در صنایع، دانشکده مهندسی متالورژی و مواد، پردیس دانشکدههای فنی دانشگاه تهران
3 - استاد، دانشکده مهندسی متالورژی و مواد، پردیس دانشکدههای فنی دانشگاه تهران
کلید واژه: سایش, SiC, سختی, ریزساختار, BN, فرایند همزن اصطکاکی, نانو کامپوزیت هیبریدی, Al7075,
چکیده مقاله :
در این پژوهش، از روش همزن اصطکاکی جهت تشکیل یک لایه سطحی کامپوزیت هیبریدی دارای ذرات SiC و BN بر روی آلیاژآلومینیوم T6-7075 در راستای بهبود سختی و مقاومت به سایش استفاده شده است. مخلوط ذره ای افزودنی های SiC وBN به نسبت وزنی برابر به ترتیب در مقیاس نانو و میکرومتری در داخل شکافی در مقابل حرکت ابزار قرار داده شدند. جهت پخش ذرات افزودنی و تامین یکنواختی تا پنج پاس دیگر نیز اعمال شد. بررسی های میکروسکوپی نشان داد که ذرات بعد از شش پاس به صورت تقریبا یکنواخت توزیع شده است. در اثر روند ترمومکانیکی فرایند همزن اصطکاکی، میزان سختی زمینه Al7075 به طور چشم گیر کاهش یافته که مرتبط با حل شدن رسوبات آن است. با افزودن مخلوط پودری و تشکیل لایه نانوکامپوزیت هیبریدی Al7075/SiC-BNسختی و مقاومت به سایش نسبت به آلیاژ پایه ارتقا نیافت و این در حالی بود که دانههای زمینه آلومینیومی از 9 به کمتر از1 میکرون در اثر فرایند همزن اصطکاکی کاهش یافته بود. لیکن با انجام عملیات حرارتی T6 بر لایه نانوکامپوزیت هیبریدی، میزان سختی و مقاومت به سایش هر کدام تا حدود یک سوم مقادیرآلیاژ پایه افزون برمقادیر آلیاژ پایه گردید. این موارد مرتبط با تشکیل رسوبات بر مبنای ترکیبات بین فلزی در اثر عملیات حرارتی T6 بود.
Friction stir processing technique was carried out to produce a 7075Al/SiC-BN hybrid nano-composite surface layer on 7075 Al substrate in order to improve hardness and wear resistance. Equal weight ratios of micron-sized SiC and nano-sized BN powder were placed in a groove in the front side of the rotating and advancing tool. In order to achieve homogeneity, five additional passes were carried out. Microscopic investigations showed near uniform distribution of the particles in a matrix of ultra-fine Al grains of less than 1mm. The micro hardness and wear resistance of the friction stir processed substrate (without introduction of SiC and BN powder) and fabricated 7075Al/SiC-BN hybrid nano-composite layer were found to be markedly lower than those of the as–received 7075Al-T6 due to dissolution of 7075Al-precipitates during thermo-mechanical regime of the process. However, these were found to increase to about one third over those of the as-received 7075Al-T6 substrate after subsequent T6 heat treatment of the fabricated hybrid nano-composite layer. Such treatment was associated with the formation of intermetallic-based precipitates.
[1] R. L. Deuis, C. Subramanian & J. M. Yellup, “Dry sliding wear of aluminum composites-A review”, Composites Science and Technology, Vol. 57, , pp. 415-435, 1997.
[2] T. W. Gustafson, P. C. Panda, G. Song & R. Raj, “Influence of microstructural scale on plastic flow behavior of metal matrix composites”, Acta Mater, Vol. 45, pp. 1633–1643, 1997.
[3] M. Kouzeli & A. Mortensen, “Size dependent strengthening in particle reinforced aluminum”, Acta Mater, Vol. 50, pp. 39–51, 2002.
[4] G. Yi & F. Yan, “Effect of hexagonal boron nitride and calcined petroleum coke on friction and wear behavior of phenolic resin-based friction composites”, Mater. Sci. Eng, Vol. 425A, pp. 330–338, 2006.
[5] J. M. Carrapichano, J. R. Gomes & R. F. Silva, “Tribological behaviour of Si3N4–BN ceramic materials for dry sliding applications”, Vol. 253, pp. 1070–1076, 2002.
[6] J. M. Wu & Z. Z. Li, “Nanostructured composites obtained by mechanically driven reduction reaction of CuO and Al powder mixture”, J. Alloys Compd, Vol. 299, pp. 9–16, 2000.
[7] H. Zhang, N. Maljkovic & B. S. Mitchell, “Structure and interfacial properties of nanocrystalline aluminum/mullite composites”, Mater. Sci. Eng, Vol. 326A, pp. 317–323, 2002.
[8] J. Qu, L. An & P. J. Blau, “Sliding friction and wear characteristics of Al2O3–Al composites”, in: Proceedings of IJTC2006 STLE/ASME Int. Joint Tribology Conf, San Antonio, TX, October, pp. 23–25, 2006.
[9] J. Tomas, “Adhesion of ultrafine particles—Energy absorption at contact”, Chem. Eng. Sci, Vol. 62, pp. 5925, 2007.
[10] H. Rumpf, the Strength of Granules and Agglomerates, Interscience, New York, 1962.
[11] ع.ا ناظم الرعایا و م. فاضل نجفآبادی، "بررسی ریزساختار و خواص مکانیکی اتصال فولاد API-X65 به روش جوشکاری هم زن اصطکاکی"، فصلنامه علمی-پژوهشی فرایندهای نوین در مهندسی مواد، دوره 9، شماره 4، صفحه 75-84، زمستان 1395.
[12] ح. آقاجانی درازکلا، م. الیاسی و م. حسین زاده، "بررسی شکلگیری عیوب و لایههای بین فلزی در جوشکاری اصطکاکی اغتشاشی آلومینیم AA1100 به فولاد A441 AISI"، فصلنامه علمی-پژوهشی فرایندهای نوین در مهندسی مواد، دوره 9، شماره 3، صفحه 1-26، پاییز 1394.
[13] R. S. Mishra, Z. Y. Ma & I. Charit, “Friction stir processing: a novel technique for fabrication of surface composite”, Mater. Sci. Eng, Vol. 341A, pp. 307–310, 2003.
[14] A. Shafiei Zarghani, S. F. Kashani-Bozorg & A. Zarei-Hanzaki, “Ultrafine grained 6082 aluminum alloy fabricated by friction stir processing”, Journal of Mat. Phys, Vol. 22B, pp. 2874-2878, 2008.
[15] S. F. Kashani-Bozorg & K. Jazayeri, “Formation of Al/B4C surface nano-composite layers on 7075 Al alloy employing friction stir processing”, AIP Conf. Proc, Vol. 1136, pp. 715-719, 2009.
[16] R. S. Mishra & Z. Y. MA, “Friction stir welding and processing”, Mater. Sci. Eng, Vol. 50, pp. 1–78, 2005.
[17] A. Askari, S. Silling, B. London & M. Mahoney, in: K. V. Jata, M. W. Mahoney, R. S. Mishra, S. L. Semiatin, D. P. Field (Eds.), “Friction Stir Welding and Processing”, TMS, Warrendale, PA, pp. 43–50, 2001.
[18] K. Oh-Ishi & T. R. McNelley, “Microstructural modification of as-Cast NiAl bronze by friction stir processing”, Metall. Mater. Trans, Vol. 35A, pp. 2951-2961, 2004.
[19] Y. S. Sato, M. Urata & H. Kokawa, “Parameters controlling microstructure and hardness during friction stir welding of precipitation-hardenable aluminum alloy 6063”, Metall. Mater. Trans, Vol. 33A, pp. 625-635, 2002.
[20] R. P. Wei, C. M. Liao & M. Gaoa, “Transmission electron microscopy study of constituent-particle-induced corrosion in 7075-T6 and 2024-T3 aluminum alloys”, Met and Mat. Trans, Vol. 29A, pp. 1153, 1998.
[21] M. Gao, C. R. Feng & R. P. Wei, “An analytical electron microscopy study of constituent particles in commercial 7075-T6 and 2024-T3 alloys”, Met. And Mat. Trans, Vol. 29A, pp. 1145, 1998.
[22] A. Gerlich, G. Avramovic-Cingara & T. H. North, “Stir zone microstructure and strain rate during Al 7075-T6 friction stir spot welding”, Met and Mat. Trans, Vol. 37A, pp. 2773, 2006.
[23] M. A. Moghaddas & S. F. Kashani-Bozorg, “Effects of thermal conditions on microstructure in nanocomposite of Al/Si3N4 produced by friction stir processing”, Mater. Sci. Eng, Vol. 559A, pp. 187, 2013.
[24] J. CheolOha, E. Yuna, M. G. Golkovskib & S. Leea, “Improvement of hardness and wear resistance in SiC/Ti-6Al-4Vsurface composites fabricated by high-energy electron beam”, Materials Science and Engineering, Vol. 351A, pp. 98-108, 2003.
N. V. Novikov, Yu. V. Sirota, V. I. Mal’nev & I. A. Petrusha, Diamond and Related Materials, Vol. 2, pp. 1253- 1256, 1993.