سینتر نانوکامپوزیت ZrB2-SiC-ZrC با استفاده از جرقۀ پلاسما (SPS) از پودرهای سنتز شده به روش MASPS
محورهای موضوعی : سرامیک ها و مواد نسوزسید محسن امامی 1 , اسمعیل صلاحی 2 , محمد ذاکری 3 , سید علی طیبی فرد 4
1 - دکتری، پژوهشکدۀ سرامیک، پژوهشگاه مواد و انرژی، کرج، ایران
2 - استاد تمام، پژوهشکدۀ سرامیک، پژوهشگاه مواد و انرژی، کرج، ایران
3 - دانشیار، پژوهشکدۀ سرامیک، پژوهشگاه مواد و انرژی، کرج، ایران
4 - دانشیار، پژوهشکدۀ نیمههادیها، پژوهشگاه مواد و انرژی، کرج، ایران
کلید واژه: نانوکامپوزیت, زیرکونیم دی بوراید (ZrB2), کاربید سیلیسیم (SiC), کاربید زیرکونیم (ZrC), سینتر با جرقۀ پلاسما (SPS),
چکیده مقاله :
در این پژوهش از پودر نانوکامپوزیتی ZrB2-SiC-ZrC سنتز شده به روش MA-SPS که روش سنتز جدیدی برای این کامپوزیت محسوب میشود، جهت سینتر کامپوزیت ZrB2-SiC-ZrC به روش SPS استفاده شد. در این پژوهش سازکار سینترشدن یه وسیلۀ نمودارهای مستخرج از فرایند SPS شامل نمودار جایجایی-دما-زمان، سرعت جابجایی – دما و سرعت جابجایی – زمان بررسی شد. فرایند سینتر شدن کامپوزیت در دمای C°1750 و زمان min 17 کامل شد. با استفاده از الگوی پراش اشعه X و روش ریتولد میانگین اندازه کریستالیتهای فازهای ZrB2، SiC و ZrC به ترتیب 77، 62 و 56 نانومتر به دست آمد. سینتر این کامپوزیت با پودرهای سنتزی جدید موجب ساخت قطعهای با دانسیتۀ نسبی % 3/99، استحکام خمشی MPa 563، سختی ویکرز GPa 18 و چقرمگی شکست MPa.m1/2 9/4 شد. تصاویر FESEM از نمونۀ سینتر شده نیز ساختاری چگال و یکنواخت را نشان داد که سه فاز ZrB2، SiC و ZrC به خوبی به یکدیگر متصل شده و پیوستگی مناسبی دارند.
ZrB2–SiC–ZrC nanocomposite were fabricated by spark plasma sintering (SPS) using ZrB2–SiC–ZrC synthesized powder by MA-SPS route. In the present research, sintering mechanism was investigated by displacement-temperature-time (DTT), displacement rate vs. temperature and displacement rate vs. time diagrams which were obtained during spark plasma sintering cycles. Sintering process of the composite was completed after 17 min at temperature of 1750°C. By using X-ray powder diffraction (XRD) pattern and Rietveld method, the mean crystallites sizes of about 77, 62 and 56 nm were calculated for ZrB2, SiC and ZrC phases, respectively. The physical and mechanical properties of sintered composite such as: density, Flexural strength, Vickers hardness and fracture toughness were % 99/3, 563 MPa, 18 GPa and 4.9 MPa.m1/2, respectively. Finally scanning electron microscopy (SEM) images show three different phases well distributed all over the sample. It is clear that ZrB2, SiC and ZrC phases are well connected and have good continuity.
[1] E. Wuchina, E. Opila, M. Opeka, W. Fahrenholtz & I. Talmy, “UHTCs: Ultra-High Temperature Ceramic Materials for Extreme Environment Applications”, The Electrochemical Society Interface • Winter 2007.
[2] م. کلانتر، "سرامیکهای سازهای دما بالا"، یزد، دانشگاه یزد، (1387).
[3] K. Upadhya, J. M. Yan & W. P. Hofman, “Material for Ultrahigh Temperature Structural Applications”, Journal of the American Ceramic Society, Bull, Vol. 76, pp. 51-56. 1997.
[4] R. W. Newman, “Oxidation-Resistant High-Temperature Materials”, Johns Hopkins APL Technical Digest, Vol. 14, No. 1, pp. 24-28.1993.
[5] H. S. Thomas & J. Marschall, “Material property requirements for analysis and design of UHTC components in hypersonic applications”, Journal of the European Ceramic Society, Vol. 30, pp. 2239–2251. 2010.
[6] R. Loehman, E. Corral, H. P. Dumm, P. Kotula & R. Tandon, “Ultra High Temperature Ceramics for Hypersonic Vehicle Applications”, SANDIA REPORT, SAND, pp. 2006-2925. 2006.
[7] C. Yong, S. Xunjia1, H. Genliang1 & X. YaKun, “Research on self-propagating high temperature synthesis prepared ZrC-ZrB2 composite”, Vol. 419, pp. 12-57. 2013.
[8] J. F. Justin & A. Jankowiak, “Ultra High Temperature Ceramics: Densification, Properties and Thermal Stability”, onera journal, issue 3, 2011.
[9] R. Aalund, “spark plasma sintering”, Ceramic Industry magazine, 2008.
[10] M. Tokita, “Mechanism of Spark Plasma Sintering”, Japanese Society of Powder and Powder Metallurgy, Kyoto, Japan pp.729–732. 2001.
[11] A. Snydera, D. Quachb, J. R. Grozab, T. Fisherc, S. Hodsonc & L. A. Stanciua, “Spark Plasma Sintering of ZrB2–SiC–ZrC ultra-high temperature ceramics at 1800 C”, Materials Science and Engineering A. Vol. 528, pp. 6079–6082. 2011.
[12] W. W. Wu, G. J. Zhang,Y. M. Kan & P. L. Wang, “Reactive Hot Pressing of ZrB2–SiC–ZrC Ultra High-Temperature ceramic at 1800”, Journal of American Ceramic Society, Vol. 89, No. 9, pp. 2967-2969. 2006.
[13] V. Medri, F. Monteverde, A. Balbo & A. Bellosi, “Comparison of ZrB2-SiC-ZrC composite fabricated by SPS and HP”, Advanced Engineering Materials, Vol. 7, pp. 159-163. 2005.
[14] S. M. Emami, E. Salahi, M. Zaker & S. A. Tayebifard, “Synthesis of ZrB2-SiC-ZrC nanocomposite by spark plasma in ZrSiO4/B2O3/C/Mg system”, Ceramics International, Vol. 42, pp. 6581–6586. 2016.
[15] S. Diouf, “Production of a nanostructured copper by Spark Plasma Sintering”, Ph.D. thesis, University of Trento, Department of Industrial Engineering, April, 2013.
[16] E. Ghasali, A. Pakseresht, F. Safari-kooshali, M. Agheli & T. Ebadzadeh, “Investigation on microstructure and mechanical behavior of Al–ZrB2 composite prepared by microwave and spark plasma sintering” Materials Science & Engineering, Vol. 627, pp. 27–30. 2015.
[17] R. Licheri, R. Orrù, C. Musa & G. Cao, “Combination of SHS and SPS Techniques for fabrication of fully dense ZrB2-ZrC-SiC composites”, Materials Letters, Vol. 62, pp. 432– 435. 2008.
[18] C. J. Rawn & J. Chaudhuri, “Lattice parameters of Gallium nitride at high temperature and resulting epitaxial misfits with alumina and silicon carbide substrates”, International Centre for Diffraction Data 2000, Advances in X-ray Analysis,Vol. 43.
]19[ ز. بلک، "ساخت و مشخصهیابی کامپوزیت ZrB2به روش SPS و ارزیابی خواص مکانیکی آن"، رسالۀ دکتری، پژوهشگاه مواد و انرژی، 1394.
[20] ASTM C 373-88: Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products, 2006.
[21] X. Zhang, Q. Qu, J. Han, W. Han & C. Hong, “Microstructural features and mechanical properties of ZrB2–SiC–ZrC composites fabricated by hot pressing and reactive hot pressing”, Scripta Materialia, Vol. 59, pp. 753–756. 2008.
[22] Q. Qiang, Z. Xinghong, M. Songhe, H. Wenbo, H. Changqing & H. Jiecai, “Reactive hot pressing and sintering characterization of ZrB2–SiC–ZrC composites”, Materials Science and Engineering, Vol. 491, pp. 117–123. 2008.
[23] W. Wu, G. Zhang, Y. Kan & P. Wang, “Reactive Hot Pressing of ZrB2–SiC–ZrC Composites at 1600C”, J. Am. Ceram. Soc., Vol. 91, No. 8, pp. 2501–2508, 2008.
[24] S. Guo, Y. Kagawa, T. Nishimura, D. Chung & J. Yang, “Mechanical and physical behavior of spark plasma sintered ZrC–ZrB2–SiC composites” Journal of the European Ceramic Society, Vol. 28, pp. 1279–1285. 2008.
[25] P, Hong, “Spark Plasma Sintering of Si3N4-Based Ceramics-Sintering mechanism-Tailoring microstructure-Evaluating properties“, Doctoral Dissertation Department of Inorganic Chemistry, Stockholm University, 2004.
[26] B. Basu, “Some fundamentals on Spark Plasma Sintering as a processing tool to fabricate Biomaterials”, Department of Materials Science and Engineering, Indian Institute of Technology Kanpur.
[27] T. Hungrıa, J. Galy & A. Castro, “Spark Plasma Sintering as a Useful Technique to the Nanostructuration of Piezo-Ferroelectric Materials”, Advanced Engineering Materials”, Vol. 11, pp. 615-631. 2009.
_||_