سینتیک احیای کربوترمی مولیبدنیت در حضور اکسید منیزیم
محورهای موضوعی : روش های نوین در استخراج فلزاتخدیجه بیرانوند 1 , محمد حسن عباسی 2 , علی سعیدی 3
1 - کارشناس ارشد، دانشکده مهندسی مواد، استخراج فلزات، دانشگاه صنعتی اصفهان، ایران
2 - استاد، دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، ایران
3 - استاد، دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، ایران
کلید واژه: سینتیک", احیای کربوترمی", مولیبدنیت", اکسیدمنیزیم",
چکیده مقاله :
در این پژوهش، سینتیک احیای کربوترمی مولیبدنیت در حضور اکسیدمنیزیم مورد بررسی قرار گرفت. نمونه های پودری با نسبت استوکیومتری(مولیبدنیت: اکسیدمنیزیم: گرافیت 2:2:1) تهیه و تحت آزمون آنالیز حرارتی هم زمان (STA)، با سه نرخ حرارتی10، 15 و20 درجه بر دقیقه، قرار گرفتند. به منظور تعیین فازهای میانی تشکیل شده در طول فرآیند، یک سری آزمایش های هم دما تحت اتمسفر آرگون صورت گرفت. نتایج نشان داد که فرآیند در محدوده دمایی ºC 900 تا ºC1400 امکان پذیر بوده و با تشکیل فازهای میانی اکسید مولیبدن (MoO2) و مولیبدات منیزیم (MgMoO4) پیش می رود. بررسی های سینتیکی با روش های بدون مدل فریدمن، اوزاوا، کسینجر و روش برازش مدل کوتز - ردفرن انجام شد. نتایج حاصل از تمامی روش ها تطابق خوبی با یکدیگر داشته و حاکی از آن بودند که مکانیزم حاکم بر واکنش کنترل شیمیایی و مقدار انرژی اکتیواسیون آن در حدود kJ/mol 425 می باشد.
In this research, the kinetics of carbothermic reduction of molybdenite in the presence of magnesium oxide was studied. Powder samples with a stoichiometric ratio (molybdenite: magnesium oxide: Graphite 1: 2: 2) prepared under simultaneous thermal analysis (STA), with three heating rates of 10, 15 and 20 degrees per minute, respectively. A series of experiments were performed under isothermal argon atmosphere, to determine the intermediate phases formed during the process. The results showed that the process temperature range was 900 ºC to 1400 ºC and with the formation of intermediate phases of molybdenum oxide (MoO2) and magnesium molybdate (MgMoO4) goes. Kinetic investigations were done with the free model methods such as Friedman, Ozawa and Kissinger as well as model fitting method Coats - Redfern. The results of all methods were in good agreement with each other and suggested that the mechanism of the reaction was chemical control and activation energy was about 425 KJ/mol.
[1] R. Ebrahimi-Kahrizsangi, M. H. Abbasi & A. Saidi, "Machanochemical effects on the Molybdenite Roasting Kinetics", Chemical Engineering Journal, Vol. 121, pp. 65-71, 2006.
[2] س. جبارزارع و س. عموشاهی فروشاهی، "بررسی لیچینگ غبار تشویه مولیبدنیت"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال سوم، شمارة چهارم، زمستان 1388.
[3] S. Ghasemi-Najafabadi, M. H. Abbasi & A. Saidi, "Thermodynamic investigation of lime-enhanced molybdenite reduction using methane-containing gases", Thermochimica Acta, Vol. 3, pp. 46-54, 2010.
[4] S. Majumdar & I. G. Sharma, "Kinetic studies on hydrogen reduction of MoO3 and morphological analysis of reduced Mo powder", Metallurgical and Materials Transaction B, Vol. 39, pp. 431-438, 2008.
[5] ع. زلفی گسمونی، ع. سعیدی و ا.ح. امامی، "بررسی تأثیر همزمان کربن و روی بر فرآیند احیای مکانوشیمیایی اکسید مس"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال دهم، شمارة چهارم، زمستان 1394.
[6] M. Afsahi & M. Sohrabi, "A study on the kinetics of Hydrogen reduction of molybdenum disulphide powders", Thermochim. Acta., Vol. 473, pp. 61-67, 2008.
[7] R. Padilla, M. C. Ruiz & H. Y. Sohn, "Reduction of Molybdenite with Carbon in the presence of Lime", Metallurgical and Materials Transaction B, Vol. 28B, pp. 265-274,1997.
[8] J. Khaki, S. Soleimani & M. Moosavi-Nejad, "Direct Reduction of Sarcheshme Copper Sulfide Concentrate with Carbon in the Presence of Lime", Iranian Journal of Materials Science, Vol. 4, No.1 and 2, 2007.
[9] P. Balaz & T. Havlik, "Hydrometallurgy: introduction", International journal of mineral processing, Vol. 77, pp. 9-17, 2005.
[10] H. Huiping & C.H. Qiyan, "Mechanism Of Mechanical Activation for Sulfide ores", Transaction Nonferrous Metal Soc china, pp. 205-213, 2007.
[11] ک. شیبانی، م. ح. تذرجی، م. عباسی و م. شمعانیان، " بررسی سینتیک احیای کربوترمی مولیبدنیت در حضور کربنات سدیم"، مواد پیشرفته در مهندسی، سال ۳۳ ، شمارة ٢، پاییز 1393.
[12] خ. بیرالوند، م. ح. عباسی و ع. سعیدی، "بررسی ترمودینامیکی احیای کربوترمی مولیبدنیت در حضور اکسید منیزیم"، مواد پیشرفته در مهندسی، سال ۳۱ ، شماره ۱، 1391.
[13] H. Friedman, "Kinetics of thermal degradation of char-forming plastic from thermogravimetry Application to a phenolic plastic", Journal of polymer Science, Vol. 6, pp. 183-195, 1964.
[14] J. T. Sun, Y. D. Huang & G. F. Gong, "Thermal degradation kinetic of poly (methyl phenyls iloxane) containing methacryloyl groups", Polymer Degration and Stability, Vol. 91, pp. 339-346, 2006.
[15] S. L. Niu, J. L. Han & J. L. Zhao, "Thermogravimetric analysis of combustion characteristics and kinetic parameters of pulverized coals in oxy-fuel atmosphere", Journal of Thermal Analysis and Calorimetric, Vol. 98, pp. 267-274, Oct. 2009.
[16] H. M. Xiao, & K. Liu, "Co-combustion kinetics of sewage sludge with coal and coal gangue under different atmospheres", Energy Conversion and Management, Vol. 51, pp. 1976-1980, Oct. 2010.
[17] H. E. Kissinger, "Variation of peak Temperature with Heating reduction Differential Thermal Analysis", Journal of Research of the National Bureau of standards, Vol. 57, pp. 217-221, Oct 1956.
[18] A. W. Coats & J. P. Redfern, "Kinetic parameters from the thermogravimetric data", Nature (London), Vol. 201, pp. 68-69, 1964.
[19] P. Ptacek & D. Kubatova, "Isothermal kinetic analysis of the thermal decomposition of kaolinite: the thermogravimetric study", Thermochimica Acta, Vol. 501, pp. 24-29, 2010.
[20] ر. ابراهیمی کهریزسنگی، "بررسی سینتیک اکسیداسیون مولیبدنیت در شرایط غیر همدما و اثرات فعالسازی مکانیکی بر آن"، دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، رساله دکتری، 1385.
[21] P. M. Prasad & P. S. Rao, "Molycarbide by Reduction-Carborization of Molybdenite in presence of lime", Metallurgical and Materials Transaction B, Vol. 33, pp. 345-354, 2002.
[22] C. H. Zhang & J. Dong, "Thermal degradation kinetics of chitosan-cobalt complex studied by thermogravimetric analysis", Carbohydrate Polymers, Vol. 82, pp. 1284-1289, 2010.
[23] V. Vlaev, N. Nedelchev & M. Zagorcheve, "A Comparation study of non-isothermal kinetics of decomposition on of Calcium oxalate monohydrate", Journal of Analytical and Applied Pyrolysis, Vol. 81, pp. 253-262, 2008.
_||_