سنتز بورنیت (Cu5FeS4) نانوساختار با روش آلیاژسازی مکانیکی و بررسی اثر دوپ کردن همزمان Zn و Co بر روی خواص ترموالکتریکی آن
محورهای موضوعی : متالورژی پودراحمد استواری مقدم 1 , علی شکوه فر 2
1 - آزمایشگاه تحقیقاتی نانوتکنولوژی و مواد پیشرفته، گروه آموزشی مهندسی و علم مواد، دانشگاه خواجه نصیرالدین طوسی، تهران، ایران
2 - دانشگاه خواجه نصیرالدین طوسی
کلید واژه: نانوساختار, آلیاژ سازی مکانیکی, بورنیت, دوپ کردن, خواص ترموالکتریک,
چکیده مقاله :
برای توسعه دستگاههای حالت جامد ترموالکتریک، موادی با بازده بالا که از عناصر غیر سمی و فراوان در پوسته زمین تشکیل شده باشد از اهمیت بسزایی برخوردار است. در این مقاله، خواص ترموالکتریک نمونههای نانوساختار Cu5-2xZnxCoxFeS4 (0 ≤ x ≤ 0.06) مورد بررسی قرار گرفت. برای این منظور، ابتدا نانوذرات Cu5-2xZnxCoxFeS4 توسط آسیاب گلولهای پرانرژی سنتز شد و سپس نمونههای نانوساختار دیسکی شکل با پرس داغ تهیه شد. روش پراش اشعه ایکس (XRD) برای مطالعه خواص ساختاری، میکروسکوپ الکترونی روبشی (SEM) و میکروسکوپ الکترونی عبوری (TEM) برای بررسی ریزساختار نمونهها مورد استفاده قرار گرفت، و خواص ترموالکتریک نمونهها نیز با اندازهگیری رسانایی الکتریکی و هدایت حرارتی بررسی شد. نتایج XRD نشان داد که ساختار بلوری نمونههای Cu5-2xZnxCoxFeS4 تا حد دوپ کردن x = 0.04 بورنیت خالص است. ضریب توان نمونههای بورنیت دوپ نشده برابر با mWm-1K-2 0.25 بود و پس از دوپ کردن با Co و Zn کاهش یافت. جایگزین کردن جزئی همزمان کبالت و روی در ساختار بورنیت در محدوده 0.02 ≤ x ≤ 0.04 باعث تغییر رسانایی نمونه به نوع-n شد. به دلیل نوسانات جرمی و کرنشی ناشی از دوپ کردن و نانوساختار بودن، هدایت حرارتی بسیار اندک k < 0.30 Wm-1K-1 برای تمام نمونههای دوپ شده بدست آمد. بیشترین مقدار ZT = 0.35 برای نمونه دوپ شده با مقدار x = 0.06 حاصل شد.
To improve current solid state thermoelectric devices, high performance materials based on safe and abundant elements is required. Here, the thermoelectric properties of Cu5-2xZnxCoxFeS4 (0 ≤ x ≤ 0.06) nanostructured samples were investigated. First, Cu5-2xZnxCoxFeS4 nanoparticles were synthesized by high energy ball milling and then consolidated into pellets by hot pressing. X-ray diffraction (XRD) analysis was employed for structural study, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for microstructural analysis, and the thermoelectric properties were evaluated by electrical conductivity and thermal conductivity measurements. XRD data revealed that the crystal structure of the materials to be consistent with a pure bornite phase up to x = 0.04 for Cu5-2xZnxCoxFeS4. The power factor of un-substituted sample was 0.25 mWm-1K-2 which decrease after Co and Zn substitution. Concurrent substituting of Co and Zn for Cu in the range of 0.02 ≤ x ≤ 0.04 changed the p-type conduction of bornite to n-type at room temperature and up to 527 K. Extremely low thermal conductivities of k < 0.30 Wm-1K-1 were obtained for all double substituted samples as a results of the significant mass and strain field fluctuations and the nanostructured nature of the samples. The highest ZT value of 0.35 was attained for x = 0.06.
[1] R. Ahmed, N. S Masuri, B. U. Haq, A. Shaari, S. A. Faifi, F. K. Butt, M. N. Muhamad, M. Ahmed & S. A. Tahir, “Investigations of electronic and thermoelectric properties of half-Heusler alloys XMgN (X = Li, Na, K) by first-principles calculationsˮ, Materials and Design, Vol. 136, pp. 196-203, 2017.
[2] A. Zolriasatein, X. Yan, E. Bauer, P. Rogl, A. Shokuhfar & S. Paschen, “Influence of PCA on thermoelectric properties and hardness of nanostructured Ba–Cu–Si clathratesˮ, Materials and Design, Vol. 87, pp. 883-890, 2015.
[3] S. Ortega, M. Ibáñez, Y. Liu, Y. Zhang, M. V. Kovalenko, D. Cadavid & A. Cabot, “Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocksˮ, Chemical Society Reviews, Vol. 46, pp. 3510-3528, 2017.
[4] H. Wang, J. F. Li, M. Zou & T. Sui, “Synthesis and transport property of AgSbTe2 as a promising thermoelectric compoundˮ, Applied Physics Letters, Vol. 93, pp. 202106, 2008.
[5] R. Chetty, A. Bali & R. C. Mallik, “Tetrahedrites as thermoelectric materials: an overviewˮ, Journal of Materials Chemistry C, Vol. 3 pp. 12364-12378, 2015.
[6] G. J. Snyder & E. S. Toberer, “Complex thermoelectric materialsˮ, Nature Materials, Vol. 7, pp. 105-114, 2008.
[7] D. James, X. Lu, A. C. Nguyen, D. Morelli & S. L. “Brock, design of lead telluride based thermoelectric materials through incorporation of lead sulfide inclusions or ligand stripping of nanosized building blocksˮ, Journal of Physical Chemistry C, Vol. 119, pp. 4635–4644, 2015.
[8] Y. Zhang, X. Jia, H. Sun, B. Sun, B. Liu, H. Liu, L. Kong & H. Ma, “Suppressing adverse intrinsic conduction of Bi2Te3 thermoelectric bulks by Sb and Cu co-substitutions via HPHT synthesisˮ, RSC Advances, Vol. 6, pp. 7378-7383, 2016.
[9] X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou & C. Uher, “High performance thermoelectricity in earth-abundant compounds based on natural mineral tetrahedritesˮ, Advanced Energy Materials, Vol. 3, pp. 342–348, 2013.
[10] X. Lu, “Thermoelectric properties of natural mineral based tetrahedrite compoundsˮ, In Department of Physics & Astronomy, Michigan State University: ProQuest LLC. pp. 158, 2014.
[11] P. Qiu, “Sulfide bornite thermoelectric material: a natural mineral with ultralow thermal conductivityˮ, Energy & Environmental Science, Vol. 7, pp. 4000-4006, 2014.
[12] Y. He, T. Day & T. Zhang, “High Thermoelectric Performance in Non‐Toxic Earth‐Abundant Copper Sulfideˮ, Advanced Materials, Vol. 26, pp. 3974-3978, 2014.
[13] B. A. Grguric & A. Putnis, “Compositional controls on phase-transition temperatures in bornite; a differential scanning calorimetry studyˮ, The Canadian Mineralogist, Vol. 36, pp. 215-227, 1998.
[14] G. Guélou, A. V. Powell & P. Vaqueiro, “Ball milling as an effective route for the preparation of doped bornite: synthesis, stability and thermoelectric propertiesˮ, Journal of Physical Chemistry C, Vol. 3, pp. 10624-10629, 2015.
[15] V. Pavan Kumar, T. Barbier, P. Lemoine, B. Raveau, V. Nassif & E. Guilmeau, “Crucial role of selenium for sulphur substitution in the structural transitions and thermoelectric properties of cCu5FeS4 borniteˮ, Dalton Transactions, Vol. 46, pp. 2174-2183, 2017.
[16] A. Ostovari Moghaddama, A. Shokuhfar & A. Cabot, “Thermoelectric properties of nanostructured bornite Cu5-xCoxFeS4 synthesized by high energy ball millingˮ, Journal of Alloys and Compounds, Vol. 750, pp. 1–7, 2018.
[17] N. Morimoto & G. Kullerud, “Polymorphism in borniteˮ, American Mineralogist,Vol. 46, pp. 1270-1282, 1961.
[18] B. A. Grguric, A. Putnis & R. J. Harrison, “An investigation of the phase transitions in bornite (Cu5FeS4) using neutron diffraction and differential scanning calorimetryˮ, American Mineralogist, Vol. 83, pp. 1231–1239, 1998.
[19] Y. Ding, D. R. Veblen & C. T. Prewitt, “High-resolution transmission electron microscopy (HRTEM) study of the 4a and 6a superstructure of bornite Cu5FeS4ˮ, American Mineralogist, Vol. 90, pp. 1256–1264, 2005.
[20] Y. Kanazawa, K. Koto & N. Morimoto, “Bornite (Cu5FeS4): stability and crystal structure of the intermediate formˮ, The Canadian Mineralogist, Vol. 16, pp. 397-404, 1978.
[21] K. Koto & N. Morimoto, “Superstructure investigation of bornite, Cu5FeS4, by the modified partial patterson functionˮ, Acta Crystallographica, Vol. 31, pp. 2268-2273, 1975.
[22] R. Chetty, A. Bali, M. H. Naik, G. Rogl, P. Rogl, M. Jain, S. Suwas & R. C. Mallik, “Thermoelectric properties of Co substituted synthetic tetrahedriteˮ, Acta Materialia, Vol. 100, pp. 266–274, 2015.
[23] A. Zhang, X. Shen, Z. Zhang, X. Lu, W. Yao, J. Dai, D. Xie, L. Guo, G. Wang & X. Zhou, “Large-scale colloidal synthesis of Cu5FeS4 compounds and their application in thermoelectricsˮ, Journal of Materials Chemistry C, Vol. 5, pp. 301-308, 2017.
[24] A. Ostovari Moghaddama, A. Shokuhfar, A. Cabot & A. Zolriasatein, “Synthesis of bornite Cu5FeS4 nanoparticles via high energy ball milling: Photocatalytic and thermoelectric propertiesˮ, Powder Technology, Vol. 333, pp. 160-166, 2018.
[25] X. Cai, X. Q. Su, F. Ye, H. Wang, X. Q. Tian, D. P. Zhang, P. Fan, J. T. Luo, Z. H. Zheng, G. X. Liang & V. A. L. Roy, “The n-type conduction of indium-doped Cu2O thin films fabricated by direct current magnetron co-sputteringˮ, Citation: Applied Physics Letters, Vol. 107, pp. 083901, 2015.
[26] L. Guo1, X. Q. Wang, X. T. Zheng, X. L. Yang, F. J. Xu, N. Tang, L. W. Lu, W. K. Ge, B. Shen, L. H. Dmowski & T. Suski, “Revealing of the transition from n- to p-type conduction of InN:Mg by photoconductivity effect measurementˮ, Scientific Reports, Vol. 4, pp. 4371, 2014.
[27] Z. Liu, Y. Zhang, J. Mao, W. Gao, Y. Wang, J. Shuai, W. Cai, J. Sui & Z. Ren, “The microscopic origin of low thermal conductivity for enhanced thermoelectric performance of Yb doped MgAgSbˮ, Acta Materialia, Vol. 128, pp. 227-234, 2017.
[28] ص. عباسی، س. م. زبرجد، ح. نوعی باغبان و ع. یوسفی، "تاثیر میزان نانوذرات بر روی پایداری و هدایت حرارتی نانوسیال حاوی نانولولههای کربنی آرایش یافته با نانوذرات TiO2"، فرآیندهای نوین در مهندسی مواد، سال 8، شماره 2، صفحه 1-8، 1393.
[29] ص. عباسی و ف. نوری وطن، "سنتز و مشخصه یابی نانومیله های نقره و مس و بررسی هدایت حرارتی نانوسیال حاوی نانومیلههای سنتزشده"، فرآیندهای نوین در مهندسی مواد، سال 10، شماره 4، صفحه 101-108، 1395.
_||_