بازیابی الکترولیتی نیکل از محلولهای سولفاتی کمعیار با الکترولیت در گردش
محورهای موضوعی : روش های نوین در استخراج فلزاتعلیرضا ذاکری 1 , امیررضا شیخ کرمی 2
1 - گروه تولید و فرآوری مواد فلزی، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران
2 - گروه تولید و فرآوری مواد فلزی، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران
کلید واژه: بازیابی نیکل, الکترووینینگ پیوسته, سلول دیافراگمدار, طرح عاملی کامل,
چکیده مقاله :
هر ساله مقادیر قابل توجهی از محصولات نیکلی مورد استفاده در فرآیندهای مختلف شیمیایی و مصارف عمومی با سپری شدن عمر مفید کاری از چرخه مصرف خارج میشوند که به علت دارا بودن محتوی نیکل بالا، منبع با ارزشی برای بازیابی نیکل به شمار میروند. تهیه نیکل فلزی از منابع ثانویه عموماً به روش هیدرو-الکترومتالورژی انجام میگیرد. با توجه به اینکه بیشتر محلولهای حاصل از فرآوری مواد ثانویه نیکلدار از عیار نسبتاً پایینی برخوردارند، فرآیند بازیابی الکترولیتی نیکل از این محلولها با چالش روبهرو است؛ بهویژه آنکه غلظت نیکل در صنعت الکترووینینگ عموماً بالاتر از 80 گرم بر لیتر است. در این پژوهش الکترووینینگ نیکل از محلولهای سولفاتی کمعیار بهصورت پیوسته، با انتخاب چهار متغیر دما، سرعت جریان ویژه الکترولیت، چگالیجریان و غلظت نیکل به کمک طرح عاملی کامل دو سطحی مورد آزمایش قرار گرفته و تأثیر این عوامل بر روی بازدهجریان و مصرف ویژه انرژی بررسی شده است. از تجزیه و تحلیل آماری نتایج معلوم شد که افزایش همه متغیرهای آزمایش موجب بهبود بازده جریان شده است، در حالیکه سرعت جریان ویژه الکترولیت، چگالی جریان و غلظت نیکل تأثیر کاهشی بر مصرف ویژه انرژی داشتهاند. در نهایت با استفاده از مدلهای آماری به دست آمده، شرایط بهینه الکترووینینگ جهت دستیابی به محصول نیکل ورقهای با بازده جریان بالا و حداقل مصرف انرژی، به صورت دمای °C 55، چگالی جریان A/dm2 3، سرعت جریان ویژه الکترولیت h−1 3 و غلظت نیکل g/L30 تعیین شد.
Significant amounts of nickel products used in different chemical processes and general applications leave them a valuable source of nickel at the end-of-life. Production of nickel from secondary sources is generally performed through hydro-electrometallurgical methods. The resulting solutions from treatment of secondary nickeliferous resources are generally of low Ni concentration and electrowinning of them is challenging, particularly since Ni concentration in commercial operations is usually more than 80 g/L. In this paper, the continuous electrowinning of nickel from dilute sulfate solutions has been investigated. The effects of four variables of temperature, specific flow rate of electrolyte, current density, and nickel concentration on current efficiency and specific energy consumption were studied by a two-level full factorial design. From the statistical analysis of the results, it was found that current efficiency increases by rising all variables, while specific energy consumption decreases with specific flow rate of electrolyte, current density, and nickel concentration. By using the obtained statistical models, the optimum conditions to achieve a nickel deposit with high current efficiency as well as lowest energy consumption are determined to be 55 °C of temperature, 3 A/dm2 of current density, 3 h−1 of electrolyte specific flow rate, and 30 g/L of nickel concentration.
[1] F. Habashi, “Handbook of extractive metallurgy”, Wiley, Vol. 2, pp. 750–752, 1997.
[2] F. K. Crundwell, “Extractive metallurgy of nickel, cobalt and platinum group metals”, Elsevier, 2011.
[3] N. H. J. Freire, D. Majuste, M. A. Angora & V. S. T. Ciminelli, “The effect of organic impurities and additive on nickel electrowinning and product qualityˮ, Hydrometallurgy, Vol. 169, pp. 112-123, 2017.
[4] M. Holm & T. J. O'keefe, “Electrolyte parameter effects in the electrowinning of nickel from sulfate electrolytesˮ Minerals Engineering, Vol. 13, No. 2, pp. 193-204, 2000.
[5] B. V. Tilak, A. S. Gendron & M. A. Mosoiu, “Borate buffer equilibria in nickel refining electrolytesˮ, Journal of Applied Electrochemistry, Vol. 7, No. 6, pp. 495-500, 1977.
[6] C. K. Gupta, “Chemical metallurgy”, Wiley, pp. 581–735, 2003.
[7] X. L. Ren, Q. F. Wei, L. I. U. Zhe & LIU. Jun, “Electrodeposition conditions of metallic nickel in electrolytic membrane reactorˮ, Transactions of Nonferrous Metals Society of China, Vol. 22, No. 2, pp. 467-475, 2012.
[8] ن. مندکاریان، ا. کشاورزعلمداری، ش. دانشپژوه و ر. آتشدهقان، "پارامترهای مؤثر بر الکترووینینگ نیکل"، دهمین کنگره سالانه انجمن مهندسین متالورژی ایران، مشهد، 1385.
[9] V. Kumar, B. D. Pandey & D. D. Akerkar, “Electrowinning of nickel in the processing of polymetallic sea nodulesˮ, Hydrometallurgy, Vol. 24, No. 2, pp. 189-201, 1990.
[10] A. M. Alfantazi & D. A. Valic, “Study of copper electrowinning parameters using a statistically designed methodologyˮ, Journal of Applied Electrochemistry, Vol. 33, No. 2, pp. 217-225, 2003.
[11] م. نوشه و ح. یوزباشی زاده، "سینتیک فرآیند الکترووینینگ کبالت از حمام سولفاتی"، فرایندهای نوین در مهندسی مواد، دوره 3، شماره 1، صفحه 11-17، بهار 1388.
[12] L. U. Jing, Q. H. Yang & Z. Zhang, “Effects of additives on nickel electrowinning from sulfate systemˮ, Transactions of Nonferrous Metals Society of China, Vol. 20, pp. 97-101, 2010.
[13] U. S. Mohanty, B. C. Tripathy, S. C. Das, P. Singh & V. N. Misra, “Effect of sodium lauryl sulphate (SLS) on nickel electrowinning from acidic sulphate solutionsˮ, Hydrometallurgy, Vol. 100, No. 1, pp. 60-64, 2009.
[14] ع. لشگری، ن. یوسفی، م. خدامراد و ا. کشاورز علمداری، "الکترووینینگ پیوسته نیکل در مقیاس نیمه صنعتی"، یازدهمین کنگره سالانه انجمن مهندسین متالورژی ایران، اصفهان، 1386.
[15] C. H. Huang, “Effect of surfactants on recovery of nickel from nickel plating wastewater by electrowinningˮ, Water Research, Vol. 29, No. 8, pp 1821-1826, 1995.
[16] N. M. Kaminari, M. J. Ponte, H. A. Ponte & A. C. Neto, “Study of the operational parameters involved in designing a particle bed reactor for the removal of lead from industrial wastewater—central composite design methodologyˮ, Chemical Engineering Journal, Vol. 105, No. 3, pp. 111-115, 2005.
[17] D. C. Montgomery, “Design and Analysis of Experiments”, 5th edition, Wiley, 2001.
[18] ا. شیخ کرمی و ع. ذاکری، "بررسی پارامتری بازیابی الکترولیتی نیکل از محلولهای کم عیار لیچینگ حاصل ازبازگردانی کاتالیست مستعمل"، اولین کنگره ملی کاربرد مواد و ساخت پیشرفته در صنایع، تهران، ۱۳۹۶.
[19] ا. شیخکرمی، "الکترووینینگ نیکل از محلول سولفاتی با عیار پائین"، پایان نامه کارشناسی ارشد، دانشگاه علم و صنعت ایران، 1396.
[20] C. Lupi & M. Pasquali, “Electrolytic nickel recovery from lithium-ion batteriesˮ Minerals Engineering, Vol. 16, No. 6, pp. 537–542, 2003.
[21] E. Jackson, “Hydrometallurgical extraction and reclamation”, Ellis Harwood Ltd, 1986.
[22] D. A. Bertuol, F. D. Amado, H. Veit, J. Z. Ferreira & A. M. Bernardes, “Recovery of nickel and cobalt from spent NiMH batteries by electrowinningˮ, Chemical Engineering & Technology, Vol. 35, No. 12, pp. 2084-2092, 2012.
[23] B. V. Tilak, A. S. Gendron & M. A. Mosoiu, “Borate buffer equilibria in nickel refining electrolytesˮ Journal of Applied Electrochemistry, Vol. 7, No. 3, pp. 495–500, 1977.
[24] K. M. Yin & B. T. Lin, “Effects of boric acid on the electrodeposition of iron, nickel and iron-nickelˮ, Surface and Coatings Technology, Vol. 78, No. 1-3, pp. 205–210, 1996.
_||_