ساخت میکروساختار هسته/پوسته/پوسته Fe3O4/SiO2/TiO2 و بررسی خواص ساختاری آن
محورهای موضوعی : عملیات حرارتیفردین قاسمی پیرانلو 1 , فاطمه باورسی ها 2 , سعیده داداشیان 3
1 - شرکت فن آوران زیست کره
2 - شرکت فن آوران زیست کره
3 - شرکت فن آوران زیست کره
کلید واژه: "ساختار هسته-پوسته", ", تیتانیا", , "سیلیکا", "فوتوکاتالیست مغناطیسی",
چکیده مقاله :
در این تحقیق کامپوزیت Fe3O4/SiO2/TiO2با ساختار هسته- پوسته-پوسته با استفاده از روش شیمیایی تر تهیه شد. ابتدا کامپوزیت Fe3O4/SiO2 با استفاده از پیش ماده تترا اتیل اورتوسیلیکات (TEOS) سنتز شد. سپس یک پوسته از TiO2 به طور مستقیم بر روی آن پوشش داده شد. نانوساختارهای Fe3O4 / SiO2 / TiO2 تهیه شده با استفاده از آنالیزهای میکروسکوپ الکترونی روبشی محیطی (FESEM)، میکروسکوپ الکترونی عبوری (TEM)، الگوی پراش پرتو ایکس (XRD) و دستگاه طیفسنجی تبدیل فوریه مادون قرمز (FTIR) مشخصه یابی شدند. نتایج نشان داد که پوششدهی لایههای SiO2 و TiO2 با موفقیت انجام شده است. نتایج نشان داد که اندازه ذرات Fe3O4 در حدود 400-300 نانومتر و ضخامت پوششهای TiO2 و SiO2 به ترتیب 4 و 30 نانومتر می باشد. خواص مغناطیسی کامپوزیت سنتز شده با استفاده از مغناطیسسنج ارتعاشی (VSM) مورد بررسی قرار گرفت. مغناطیس اشباع (Ms) پودر Fe3O4 و کامپوزیت Fe3O4/SiO2/TiO2 به ترتیب emu/g 80 و emu/g 37 و هم چنین میزان پسماند مغناطیسی (Mr) پودر Fe3O4 و کامپوزیت Fe3O4/SiO2/TiO2 به ترتیب emu/g 8 و emu/g 43/6 به دست آمد.
In this study, Fe3O4 / SiO2 / TiO2 composite was prepared with core-shell-shell structure using a wet chemical method. At first the composite Fe3O4 / SiO2 was synthesized via Tetraethyl orthosilicate (TEOS) precursor. Then a shell of TiO2 was coated directly on it. Fe3O4 / SiO2 / TiO2 microstructures produced were characterized by environmental scanning electron microscopy analysis (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy devices (FTIR). The results showed that SiO2 and TiO2 layers has been coating successfully. The results indicated that the mean size of Fe3O4 particles was about 300-400 nm and thickness of the TiO2 and SiO2 shells was about 4 and 30 nm, respectively. magnetic properties of the synthesized composite were studied by Vibrating Sample Magnetometer (VSM). Pure Fe3O4 and Fe3O4@SiO2@TiO2 composites magnetization saturation (Ms) obtained 80 and 37 emu/g, respectively. also the remanent magnetization (Mr) value of Fe3O4 and Fe3O4 / SiO2 / TiO2 microstructures was 8 and 6.43 emu/g, respectively.
[1] S. Rana, J. Rawat & R. D. K. Misra, “Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: TiO2–NiFe2O4 biomaterial systemˮ, Acta Biomaterialia, Vol. 1, pp. 691–703, 2005.
[2] J. Shi & X. Wang, “Growth of Rutile Titanium Dioxide Nanowires by Pulsed Chemical Vapor Depositionˮ, J. Cryst. Growth, Vol. 11, pp. 949–954, 2011.
[3] N. Bouanimba, R. Zouaghi, N. Laid & T. Sehili, “Factors influencing the photocatalytic decolorization of Bromophenol blue in aqueous solution with different types of TiO2 as photocatalystsˮ, Desalination, Vol. 275, pp. 224–230, 2011.
[4] K. W. Kima, S. H. Youb, S. S. Parkb, G. H. Kangb, W. T. Baeb & D. W. Shinb, “Effect of experimental conditions on photocatalytic efficiency in TiO2 powder slurry Systemsˮ, Ceramic Processing Research, pp. 530-537, 2008.
[5] س. نقیبی، ا. جمشیدی، م. برزگر و س. رمضانی، "بررسی ریزساختاری لایه نازک تیتانیا بر روی فولاد 316 به روش سلژل (بهینهسازی متغیرهای فرآیند با روش آماری تاگوچی)"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، شماره 4، صفحه 79- 89، زمستان 1391.
[6] ع. خراسانی فردوانی، م. نصر اصفهانی و س. ع. حسن زاده، "تاثیر تابش نور فرابنفش بر زیست فعالی پوشش های هیبریدی نانوساختار پلی سیلوکسان- تیتانیوم دی اکسید- شیشه زیستی به روش سل-ژل"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، شماره 4، صفحه 129-137، زمستان 1394.
[7] J. A. Byrne, B. R. Eggins, N. M. D. Brown, B. McKinney & M. Rouse, “Immobilisation of TiO2 powder for the treatment of polluted waterˮ, Environmental, Vol. 17, pp. 25-36, 1998.
[8] X. Chen, C. Li, J. Wang, J. Li, X. Luan, Y. Li, R. Xu & B. Wang, “Investigation on solar photocatalytic activity of TiO2 loaded composite: TiO2/Eggshell, TiO2/Clamshell and TiO2/CaCO3ˮ, Materials Letters, Vol. 64, pp. 1437–1440, 2010.
[9] Haarstrick, O. M. Kut & E. Heinzle, “TiO2-Assisted Degradation of Environmentally Relevant Organic Compounds in Wastewater Using a Novel Fluidized Bed Photoreactorˮ, Environ. Sci. Technol, Vol. 30, pp. 817-824, 1996.
[10] X. Shihong, S. Wenfeng, Y. Jian, C. Mingxia & S. Jianwei, “Preparation and Photocatalytic Properties of Magnetically Separable TiO2 Supported on Nickel Ferriteˮ, Chin. J. Chem. Eng., Vol. 15, No. 2, pp. 190—195, 2007.
[11] Z. Wang, L. Shen & S. Zhu, “Synthesis of Core-Shell Fe3O4@SiO2@TiO2 Microspheres and Their Application as Recyclable Photocatalystsˮ, Hindawi Publishing Corporation International Journal of Photoenergy, Vol. 10.1155/2012/202519, 2012.
[12] H. Liu, Z. Jia, S. Ji, Y. Zheng, M. Li & H. Yang, “Synthesis of TiO2/SiO2@Fe3O4 magnetic microspheres and their properties of photocatalytic degradation dyestuffˮ, Catalysis Today, Vol. 175, pp. 293– 298, 2011.
[13] Q. Yu, C. Zhou & X. Wang, “Influence of plasma spraying parameter on microstructure and photocatalytic properties of nanostructured TiO2–Fe3O4 coatingˮ, Molecular Catalysis A: Chemical, Vol. 283, pp. 23–28, 2008.
[14] D. Beydoun & R. Amal, “Novel Photocatalyst: Titania-Coated Magnetite. Activity and Photodissolutionˮ, J. Phys. Chem, Vol. 104B, pp. 4387-4396, 2000.
[15] S. Watson, D. Beydoun & R. Amal, “Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic coreˮ, Photochemistry and Photobiology A: Chemistry, Vol. 148, pp. 303–313, 2002.
[16] S. Pang, et al, “Fabrication of Magnetite/Silica/Titania Core-Shell Nanoparticlesˮ, Nanomaterials Vol. 10.1155:4273 10, 2012.
[17] J. Li, L. Gao, Q. Zhang, R. Feng, H. Xu, J. Wang, D. Sun & C. Xue, “Photocatalytic Property of Fe3O4/SiO2/TiO2 Core-Shell Nanoparticle with Different Functional Layer Thicknessesˮ, Vol. 10.1155/986809, 2014.
[18] Y. H. Deng, C. C. Wang, J. H. Hu, W. L. Yang & S. K. Fu, “Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approachˮ, Colloids and Surfaces, Vol. 262A, No. 1–3, pp. 87–93, 2005.
[19] V. Belessi, D. Lambropoulou, I. Konstantinou, R. Zboril, J. Tucek, D. Jancik, T. Albanis & D. Petridis, “Structure and photocatalytic performance of magnetically separable titania photocatalysts for the degradation of propachlorˮ, Appl. Catal. B: Environ, Vol. 87, pp. 181-189, 2009.
_||_