بررسی اثر دما و زمان کلسیناسیون بر سنتز YAG نانو کریستال با استفاده از روش هم رسوبی نرمال
محورهای موضوعی : سنتز موادامید میرزایی 1 , مهسا رحمانی 2 , محمد تجلی 3
1 - دانشیار دانشگاه سمنان
2 - دانشجوی دکتری/دانشگاه سمنان
3 - دانشیار/دانشگاه سمنان
کلید واژه: ", سنتز YAG", , ", نانو کریستال", , ", همرسوبی نرمال", , ", دما و زمان کلسیناسیون", ,
چکیده مقاله :
ایتریوم-آلومینیوم-گارنت (YAG، با فرمول شیمیایی Y3Al5O12) نانو کریستال از طریق روش همرسوبی نرمال با استفاده از ایتریا و نیترات آلومینیوم به عنوان مواد اولیه و آمونیوم هیدرژن کربنات (AHC، NH4HCO3) به عنوان عامل رسوبگر سنتز شد. برای بررسی اثر دما و زمان کلسیناسیون پیش ماده حاصل در دمای C° 1100-900 به مدت 2 ساعت و همچنین در دمای C° 1100 در زمانهای مختلف دیگر (15، 30، 45 و 60 دقیقه) تحت کلسیناسیون قرار گرفت. تغییرات ترکیب فاز و ریزساختار نمونههای سنتز شده توسط روشهای مختلفی از قبیل پراش پرتو ایکس (XRD)، طیف سنجی تبدیل فوریه مادون قرمز (FTIR)، آنالیز حرارتی (TG/DTA)، آنالیز سطح ویژه (BET) و میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM) مورد بررسی قرار گرفتند. فاز مکعبی YAG با متوسط اندازه ذرات nm 33 و میزان سطح ویژه m2/g 30 در دمای C° 1000 تشکیل شد. از طرف دیگر نانو کریستال YAG خالص با کلسینه کردن تنها به مدت 15 دقیقه در دمای C° 1100 نیز حاصل شد. نتایج نشان داد افزایش دمای کلسیناسیون نسبت به زمان اثر بسیار بیشتری در افزایش اندازه متوسط کریستال ها و ذرات داشته است.
Nano-crystalline Yttrium aluminum garnet (YAG, Y3Al5O12) were synthesized by normal co-precipitation method using yttria and aluminum nitrates as the starting materials and ammonium hydrogen carbonate (AHC, NH4HCO3) as precipitant. To investigate the effect of temperature and holding time the resultant precursors were calcined at 900-1100 °C for 2 h also at 1100 °C for other durations (15, 30, 45 and 60 min). The evolution of phase composition and micro-structure of the as-synthesized YAG powders were characterized by different techniques such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermal analyses (TG/DTA), Specific surface area analyses (BET) and field emission electron microscopy (FESEM). The cubic YAG phase with an average grain size of 33 nm and specific surface area of 30 m2/g was completely formed at 1000 °C. In addition, pure YAG nano powders were obtained at 1100 °C in only 15 min calcination. Results showed that compared with increasing holding time, raising of temperature have more intense effect in increasing YAG crystal or particle size.
[1] J. Abell, et al., “An investigation of phase stability in the Y2O3-Al2O3 systemˮ, Journal of Materials Science, Vol. 9, No. 4, pp. 527-537, 1974.
[2] A. Ikesue, “Polycrystalline Nd: YAG ceramics lasersˮ, Optical materials, Vol. 19, No. 1, pp. 183-187, 2002.
[3] Y. Ru, et al., “Synthesis of yttrium aluminum garnet (YAG) powder by homogeneous precipitation combined with supercritical carbon dioxide or ethanol fluid dryingˮ, Journal of the European Ceramic Society, Vol. 28, No. 15, pp. 2903-2914, 2008.
[4] Y. Pan, M. Wu & Q. Su, “Comparative investigation on synthesis and photoluminescence of YAG: Ce phosphorˮ, Materials Science and Engineering, Vol. 106B, No. 3, pp. 251-256, 2004.
[5] م. دادخواه، و همکاران، "سنتز نانو ذرات منیزیا به روش شیمیایی و تاثیر آن بر خواص فیزیکی آلومینای زینتر شده"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، سال هشتم، شماره چهارم، زمستان 1393، 114- 107.
[6] S. Hassanzadeh Tabrizi, “Low temperature synthesis and luminescence properties of YAG: Eu nanopowders prepared by modified sol-gel methodˮ, Transactions of Nonferrous Metals Society of China, Vol. 21, No. 11, pp. 2443-2447, 2011.
[7] R. Manalert & M. Rahaman, “Sol-gel processing and sintering of yttrium aluminum garnet (YAG) powdersˮ, Journal of materials science, Vol. 31, No. 13, pp. 3453-3458, 1996.
[8] S. Hassanzadeh Tabrizi, “Synthesis and luminescence properties of YAG: Ce nanopowder prepared by the Pechini methodˮ, Advanced Powder Technology, Vol. 23, No. 3, pp. 324-327, 2012.
[9] G. Xia, et al., “Structural and optical properties of YAG: Ce 3+ phosphors by sol–gel combustion methodˮ, Journal of Crystal Growth, Vol. 279, No. 3, pp. 357-362, 2005.
[10] Z. Yang, et al., “The influence of different conditions on the luminescent properties of YAG: Ce phosphor formed by combustionˮ, Journal of Luminescence, Vol. 122, pp. 707-709, 2007.
[11] B. Huang, et al., “Luminescent properties of low-temperature-hydrothermally-synthesized and post-treated YAG: Ce (5%) phosphorsˮ, Optical Materials, Vol. 36, No. 9, pp. 1561-1565, 2014.
[12] A. Sahraneshin, et al., “Synthesis and morphology control of surface functionalized nanoscale yttrium aluminum garnet particles via supercritical hydrothermal methodˮ, Progress in Crystal Growth and Characterization of Materials, Vol. 58, No. 1, pp. 43-50, 2012.
[13] X. Li, et al., “YAG: Ce nano-sized phosphor particles prepared by a solvothermal methodˮ, Materials Research Bulletin, Vol. 39, No. 12, pp. 1923-1930, 2004.
[14] J. G. Li, et al., “Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: the effect of precipitantˮ, Journal of the European Ceramic Society, Vol. 20, No. 14, pp. 2395-2405, 2000.
[15] F. Yuan & H. Ryu, “Ce-doped YAG phosphor powders prepared by co-precipitation and heterogeneous precipitationˮ, Materials Science and Engineering, Vol. 107B, No. 1, pp. 14-18, 2004.
[16] S. Tong, T. Lu & W. Guo, “Synthesis of YAG powder by alcohol–water co-precipitation methodˮ, Materials Letters, Vol. 61, No. 21, pp. 4287-4289, 2007.
[17] D. Sordelet, et al., “Synthesis of yttrium aluminum garnet precursor powders by homogeneous precipitationˮ, Journal of the European Ceramic Society, Vol. 14, No. 2, pp. 123-130, 1994.
[18] Y. C. Kang, et al., “YAG: Ce phosphor particles prepared by ultrasonic spray pyrolysisˮ, Materials Research Bulletin, Vol. 35, No. 5, pp. 789-798, 2000.
[19] Y. Zhou, et al., “Morphology control and luminescence properties of YAG: Eu phosphors prepared by spray pyrolysisˮ, Materials research bulletin, Vol. 38, No. 8, pp. 1289-1299, 2003.
[20] Y. S. Ho, et al., “Effects of Molar Ratio of Acetylacetone to Aluminum Precursor on the Yttrium Aluminum Garnet (Y3Al5O12, YAG) Formation by a Sol–Gel Processˮ, International Journal of Applied Ceramic Technology, Vol. 12, No. S2, 2015.
[21] X. Zhang, et al., “Synthesis of monodisperse and spherical YAG nanopowder by a mixed solvothermal methodˮ, Journal of alloys and compounds, Vol. 372, No. 1, pp. 300-303, 2004.
[22] H. Wang, L. Gao & K. Niihara, “Synthesis of nanoscaled yttrium aluminum garnet powder by the co-precipitation methodˮ, Materials Science and Engineering, Vol. 288A, No. 1, pp. 1-4, 2000.
[23] J. Li, et al., “Co-precipitation synthesis route to yttrium aluminum garnet (YAG) transparent ceramicsˮ, Journal of the European Ceramic Society, Vol. 32, No. 11, pp. 2971-2979, 2012.
[24] J. Li, et al., “A homogeneous co-precipitation method to synthesize highly sinterability YAG powders for transparent ceramicsˮ, Ceramics International, Vol. 41, No. 2, pp. 3283-3287, 2015.
[25] X. Li, et al., “Preparation of YAG: Nd nano-sized powder by co-precipitation methodˮ, Materials Science and Engineering, Vol. 379A, No. 1, pp. 347-350, 2004.
[26] J. Cheng, et al., “Low-temperature solution synthesis and characterization of Ce-doped YAG nanoparticlesˮ, Journal of Rare Earths, Vol. 33, No. 6, pp. 591-598, 2015.
[27] G. Xu, et al., “Preparation of highly dispersed YAG nano-sized powder by co-precipitation methodˮ, Materials letters, Vol. 60, No. 7, pp. 962-965, 2006.
[28] J. Su, et al., “Preparation and characterization of Y 3 Al 5 O 12 (YAG) nano-powder by co-precipitation methodˮ, Materials Research Bulletin, Vol. 40, No. 8, pp. 1279-1285, 2005.
[29] Y. Alizad Farzin, O. Mirzaee & A. Ghasemi, “Influence of Mg and Ni substitution on structural, microstructural and magnetic properties of Sr2Co2-xMgx/2Nix/2Fe12O22 (Co2Y) hexaferriteˮ, Journal of Magnetism and Magnetic Materials, Vol. 371, pp. 14-19, 2014.
[30] م. شایگانی مدد، و همکاران، "تاثیر عملیات حرارتی و اندازه ذره بر تغییرات فازی نانوذرات دی اکسید تیتانیوم"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، سال چهارم، شماره چهارم، زمستان 1389، 57 - 51.
[31] M. Nyman, et al., “Comparison of Solid‐State and Spray‐Pyrolysis Synthesis of Yttrium Aluminate Powdersˮ, Journal of the American Ceramic Society, Vol. 80, No. 5, pp. 1231-1238, 1997.
[32] C. Marlot, et al., “Synthesis of YAG nanopowder by the co-precipitation method: Influence of pH and study of the reaction mechanismsˮ, Journal of Solid State Chemistry, Vol. 191, pp. 114-120, 2012.
[33] J. Li, et al., “Synthesis of nanosized Nd: YAG powders via gel combustionˮ, Ceramics international, Vol. 33, No. 6, pp. 1047-1052, 2007.
[34] W. Jieqiang, et al., “Effect of sulfate ions on YAG powders synthesized by microwave homogeneous precipitationˮ, Journal of Rare Earths, Vol. 24, No. 1, pp. 284-287, 2006.
[35] X. Li, et al., “Production of nanosized YAG powders with spherical morphology and nonaggregation via a solvothermal methodˮ, Journal of the American Ceramic Society, Vol. 87, No. 12, pp. 2288-2290, 2004.
[36] J. Tan, et al., “Preparation of nanometer-sized (1− x) SnO 2· xSb 2 O 3 conductive pigment powders and the hydrolysis behavior of ureaˮ, Dyes and pigments, Vol. 61, No. 1, pp. 31-38, 2004.
[37] A. Y. Nejman, et al., “Conditions and macromechanism of solid-phase synthesis of yttrium aluminatesˮ, Journal Zhurnal Neorganicheskoj Khimii, ISSN 0044-457X, Vol. 25, No. 9, pp. 2340-2345, 1980.
[38] K. Hayashi, et al., “Phase Transformation of Alumina Derived from Ammonium Aluminium Carbonate Hydroxide (AACH)ˮ, Journal of the Ceramic Society of Japan, Vol. 99, No. 1151, pp. 550-555, 1991.
[39] V. Saraswati, G. Rao & G. R. Rao, “Structural evolution in alumina gelˮ, Journal of materials science, Vol. 22, No. 7, pp. 2529-2534, 1987.
[40] Y. Sang, et al., “Formation and calcination temperature-dependent sintering activity of YAG precursor synthesized via reverse titration methodˮ, Journal of Alloys and Compounds, Vol. 509, No. 5, pp. 2407-2413, 2011.
[41] T. Takamori & L. D. David, “Controlled nucleation for hydrothermal growth of yttrium-aluminum garnet powdersˮ, American Ceramic Society Bulletin, Vol. 65, No. 9, pp. 1282-1286, 1986.
[42] A. Jillavenkatesa, S. Dapkunas & L. Lum, “Particle Size Characterizationˮ, National Institute of Standards and Trchnology, Sp. Publ. 960, Vol. 188, 2001.
_||_