مشخصه یابی کامپوزیت مس زیرکونیای پایدار شده با ایتریا تولید شده با تفجوشی پلاسمای جرقه ای
محورهای موضوعی : متالورژی پودرجعفر میرعظیمی 1 , پروین عباچی 2 , کاظم پورآذرنگ 3 , وحید بابایی 4
1 - دانشکده مهندسی و علم مواد، دانشگاه صنعتی شریف تهران، ایران
2 - دانشکده مهندسی و علم مواد، دانشگاه صنعتی شریف تهران، ایران
3 - دانشکده مهندسی و علم مواد، دانشگاه صنعتی شریف تهران، ایران
4 - دانشکده مهندسی و علم مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی تهران، ایران
کلید واژه: متالورژی پودر, ریزساختار, هدایت حرارتی, تف جوشی پلاسمای جرقه ای, کامپوزیت های مس- زیرکونیای پایدار شده با ایتریا,
چکیده مقاله :
درکاربردهایی مانند اتصالات الکتریکی کشویی، علاوه بر خواص مکانیکی قابل قبول به هدایت الکتریکی و حرارتی خوب نیاز است. گذشته از این، در این نوع کاربردها باید از جوش موضعی قسمتهای مختلف قطعه جلوگیری شود. اگرچه افزودن ذرات سرامیکی به فلز هادی الکتریکی و حرارتی همچون مس موجب کاهش خواص فیزیکی فوق میشود، تولید کامپوزیتهای زمینه مسی بهبود استحکام کششی، مقاومت سایشی و مقاومت در برابر جریان الکتریکی با آمپر بالا را در پی دارد. از این رو، در پژوهش حاضر کامپوزیتهای پایه مس حاوی 2، 3 و 5 درصد حجمی ذرات فوق ریزدانه زیرکونیای پایدار شده با ایتریا با استفاده از روش متالورژی پودر و تفجوشی پلاسمای جرقهای تولید شد. چگونگی توزیع ذرات تقویتکننده در ریز ساختار با استفاده از میکروسکوپ الکترونی به دقت مطالعه شد. مقادیر چگالی و سختی برینل اندازهگیری و هدایت حرارتی نمونهها تعیین شد. بر اساس نتایج، ذرات تقویتکننده به صورت قابل قبولی در زمینه توزیع شدهاند و خوشهای شدن ذرات در ریزساختار چندان فاحش نیست. چگالی نسبی بیشتر از 95% به علت نحوه تفجوشی برای همه نمونهها بدست آمد. به دلیل حضور ذرات سرامیکی سخت زیرکونیای پایدار شده، افزایش 60 درصدی در سختی برینل نمونهی کامپوزیتی Cu-5 vol.% YSZ نسبت به نمونه مس تقویتنشده مشاهده شد. همچنین، با افزایش مقدار زیرکونیای پایدار شده از صفر به 5 درصد حجمی، مقادیر هدایت حرارتی تعیین شده از 397 به W/m K 241 کاهش یافت که این تغییرات میتواند به مشخصههای ریزساختاری از جمله درصد فاز تقویتکننده، درصد تخلخل، وجود ناخالصیها و سایر عیوب ریزساختاری مربوط باشد.
In applications like sliding electrical contacts good electrical/thermal conductivity as well as wear resistance is required besides suitable mechanical properties. Furthermore, in these types of applications it is necessary to be prevented from local welding of various parts of pieces to each other. Although the addition of ceramic particles to a conductive metal like copper can lead to decrease of above mentioned physical properties, the producing of copper matrix composites can induce high tensile strength, better wear resistance, and resistance to electrical current with high amperage improvement. Hence, at the present study, the copper based composites containing 2, 3 and 5 vol. % ultra-fine grained yttria stabilized zirconia (YSZ) particles were produced by powder metallurgy and spark plasma sintering (SPS) method. The distribution of reinforcing particles at the microstructure was carefully studied using electron microscopy. Additionally, the density, hardness and thermal conductivity values of the specimens were measured. Referring to the results, microstructural analysis showed satisfactorily distribution of reinforcement particles in copper matrix and the clustering of particles is not so noticeable. The relative density up to 95% for all specimens was obtained due to the sintering procedure. As a result of the presence of hard stabilized zirconia particles, an increase of 60 percent in the Brinell hardness of the Cu-5 vol.% YSZ composite sample was observed in comparison with unreinforced copper. Moreover, the determined thermal conductivity values decreased from 397 to 241 W/m K with increasing of reinforcement content from 0 to 5 vol. %. The variation in the thermal conductivities can be related to the microstructural characteristics such as reinforcement and porosity volume percent as well as other microstructural defects.
[10] G. Iepure, I. Vida-Simiti, N. Jumate, M. Ciudas, V. Hotea & I. Juhasz, “Effect of ZrO2 particles upon Cu-ZrO2 material used for the spot welding electrodes”, metalurgia international, Vol. 14, pp. 21-24, 2009.
[24] R. M. German, “Sintering: from emperical observations to scientific principals”, Butterworth-Heinemann, pp. 136, 2014.
[26] A. G. Mawson, G. A. Carter, R. D. Hart, N. M. Kirby & A.C. Nachmann, “Mechanical Properties of 8 Mole% Yttria-Stabilised Zirconia for Solid Oxide Fuel Cells”, In Materials Forum. Vo. 30, pp. 148-158, 2006.
[28] S. C. Tjong, “Carbon nanotube reinforced composites: metal and ceramic matrices”, John Wiley & Sons, pp. 54-56, 2009.
[30] ف. شجاعیپور، پ. عباچی، ک. پورآذرنگ وا. ح. مغنیان، "بررسی خواص فیزیکی و مکانیکی نانوکامپوزیت مس/اکسید کروم تولید شده به روش آلیاژ سازی مکانیکی و اکسیداسیون داخلی"، فصلنامه علمی پژوهشی مهندسی مواد مجلسی، سال پنجم، شماره دوم، تابستان 1390.
_||_