بررسی تاثیر نوع تمپر حرارتی آلومینیوم بر خواص ریزساختاری و مکانیکی اتصال نفوذی آلیاژهای آلومینیوم 6061 و منیزیم AZ31
محورهای موضوعی : عملیات حرارتیمجتبی جعفریان 1 , علیرضا خدابنده 2 , مرتضی جعفریان 3
1 - دانشگاه آزاد اسلامی واحد تهران جنوب
2 - دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران
3 - دانشگاه آزاد اسلامی واحد تهران جنوب
کلید واژه: ریزساختار, آلومینیوم 6061, منیزیم AZ31, نوع تمپر حرارتی, اتصال نفوذی,
چکیده مقاله :
در این پژوهش، به بررسی تاثیر نوع تمپر حرارتی آلیاژ آلومینیوم بر ریزساختار و خواص مکانیکی اتصالات نفوذی آلیاژهای آلومینیوم 6061 (T6,O) و منیزیم AZ31 (O) پرداخته شد. فصل مشترک اتصالات توسط میکروسکوپهای نوری (OM) و الکترونی روبشی (SEM) مجهز به آنالیزهای نقطهای (EDS) و خطی (linescane) بررسی شدند. خواص مکانیکی اتصالها با استفاده از آزمونهای میکروسختی ویکرز و استحکام برشی اندازهگیری شد. با توجه به نتایج، در اتصال Al 6061-O/Mg AZ31 تغییر فرم پلاستیک کمتر در آلیاژ منیزیم، نرخ نفوذ بیشتر اتمهای منیزیم به سمت آلیاژ آلومینیوم و تشکیل ناحیه نفوذ با کمترین میزان میکروسختی (HV 140) و بیشترین مقدار استحکام برشی (MPa 32) نسبت به اتصال Al 6061-T6/Mg AZ31 رخ داد. بررسی سطوح شکست نشان دهنده وقوع پدیده شکست از فاز ترد Al3Mg2 بود.
In this study, the effect of Al alloy temper type on the microstructure and mechanical properties of Al 6061 (T6,O) and Mg AZ31 (O) were investigated. The interface of joints was investigated by optical microscope (OM) and Scanning Electron Microscope (SEM) equipped with EDS and Linescane analysis. Mechanical properties of joints were measured by using a Vickers microhardness and shear strength tests. According to the results, in Al 6061-O/Mg AZ31 joint, less plastic deformation in the Mg alloy, further diffusion rate of Mg atoms in the Al alloy and the formation of diffusion region with the lowest amount of microhardness (140 HV) and the highest amount of shear strength (32 MPa) was occurred compared to Al 6061-T6/Mg AZ31 joint. Evaluation of fracture surfaces indicates the occurrence of the failure in brittle phase of Al3Mg2.
[1] A. C. Somasekharan & L. E. Murr, “Microstructures in Friction-stir Welded Dissimilar Magnesium Alloys and Magnesium Alloys to 6061-T6 Aluminum Alloy”, Mater. Charact, Vol. 52, pp. 49-64, 2004.
[2] ف. غروی، ا. ابراهیم زاده و ع. سهیلی، "ارزیابی ریزساختار و خواص مکانیکی اتصال لبه رویهم جوشکاری اصطکاکی اغتشاشی آلیاژ آلومینیوم 6061 در سرعت های پیشروی متفاوت"، نشریه فرایندهای نوین در مهندسی مواد، شماره 2، ص 115-129، 1395.
[3] م. ت. صالحی، س.ح. سیدین و ا. بادامی، "پیش بینی ریزساختار حاصل از پیچش گرم در آلیاژ آلومینیوم 6061"، نشریه فرایندهای نوین در مهندسی مواد، شماره 3، ص 11-21، 1393.
[4] J. Wang, J. C. Feng & Y. X. Wang, “Microstructure of Al–Mg Dissimilar Weld made by Cold Metal Transfer MIG Welding”, Mater. Sci. Technol, Vol. 24, pp. 827-831, 2008.
[5] D. Q. Sun, X. Y. Gu & W. H. Liu, “Transient Liquid Phase Bonding of Magnesium Alloy (Mg–3Al–1Zn) using Aluminium Interlayer”, Mater. Sci. Eng, Vol. 391A, pp. 29–33, 2005.
[6] P. Liu, Y. Li, G. Haoran & W. Juan, “Investigation of Interfacial Structure of Mg/Al Vacuum Diffusion Bonded Joint”, Vacuum, Vol. 80, pp. 395-400, 2006.
[7] Y. Li, P. Liu, J. Wang & H. Ma, “XRD and SEM Analysis near the Diffusion Bonding Interface of Mg/Al Dissimilar Materials”, Vacuum, Vol. 82, pp. 9-15, 2008.
[8] G. Mahendran, N. Balasubramanian & T. Senthilvelan, “Influences of Diffusion Bonding Process Parameters on Bond Characteristics of Mg-Cu Dissimilar Joints”, Trans. Non-Ferrous Met. Soc. China, Vol. 20, pp. 997-1005, 2010.
[9] G. Mahendran, V. Balasubramanian & T. Senthilvelan, “Developing Diffusion Bonding Windows for Joining AZ31B Magnesium-AA2024 Aluminium Alloys”, Materials and Design, Vol. 30, pp. 1240-1244, 2009.
[10] S. Jing, W. Ke-hong, Z. Qi, Z. De-ku, H. Jun & G. Jia-qi, “Effect of Joining Temperature on Microstructure and Properties of Diffusion Bonded Mg/Al Joints”, Trans. Nonferrous Met. Soc. China, Vol. 22, pp. 1961-1966, 2012.
[11] M. W. Tseng, D. B. Williams, K. K. Soni & R. Levi-Setti, “Microstructural Evolution during Transient Liquid-phase Bonding in a Ni-base Superalloy/sapphire Fiber Composite”, Journal of Materials Science, Vol. 34, pp. 5187-5197, 1999.
[12] N. Orhan, T. I. Khan & M. Eroglu, “Diffusion Bonding of a Microduplex Stainless Steel to Ti-6Al-4V”, ScriptaMaterialia, Vol. 45, pp. 441-446, 2001.
[13] S. Kundu & S. Chatterjee, “Characterization of Diffusion Bonded Joint between Titanium and 304 Stainless Steel using a Ni Interlayer”, Materials Characterization, Vol. 59, pp. 631-637, 2008.
[14] S. Kundu & S. Chatterjee, “Diffusion Bonding between Commercially Pure Titanium and Micro-Duplex Stainless Steel”, Materials Science and Engineering A, Vol. 480, pp. 316-322, 2008.
[15] S. Hinotani & Y. Ohmari, “The Microstructure of Diffusion-Bonded Ti/Ni Interface”,Trans. Jpn. Inst. Met., Vol. 29, pp. 116-24, 1988.
[16] H. Nishi, T. Araki & M. Eto, “Diffusion Bonding of Alumina Dispersion-Strengthened Copper to 316 Stainless Steel with Interlayer Metals”, Fusion Engineering and Design, Vol. 39, pp. 505-511, 1988.
[17] O. Yilmaz & M. Aksoy, “Investigation of Micro-Crack Occurrence Conditions in Diffusion Bonded Cu-304 Stainless Steel Couple”, Journal of Materials Processing Technology, Vol. 121, pp. 136-142, 2002.
[18] O. Yilmaz & H. Celik, “Electrical and Thermal Properties of the Interface at Diffusion-Bonded and Soldered 3040 Stainless Steel and Copper Bimetal”, Journal of Materials Processing Technology, Vol. 141, pp. 67-76, 2003.
[19] D. Dietrich, D. Nickel, M. Krause, T. Lampke, M.P. Coleman & V. Randle, “Formation of Intermetallic Phases in Diffusion Welded Joints of Aluminium and Magnesium Alloys”, J. Mater. Sci, Vol. 46, pp. 357-364, 2011.
[20] M. J. Fernandus, T. Senthilkumar & V. Balasubramania, “Developing Temperature-Time and Pressure-Time Diagrams for Diffusion Bonding AZ80 Magnesium and AA6061 Aluminium Alloys”, Materials and Design, Vol. 32, pp. 1651-1656, 2011.
[21] L. Liu, L. Zhao & R. Xu, “Effect of Interlayer Composition on the Microstructure and Strength of Diffusion Bonded Mg/Al Joint”, Materials and Design, Vol. 30, pp. 4548-4551, 2009.
[22] S. Jing, W. Ke-hong, Z. Qi, Z. De-ku, H. Jun & G. Jia-qi, “Effect of Joining Temperature on Microstructure and Properties of Diffusion Bonded Mg/Al Joints”, Trans. Nonferrous Met. Soc. China, Vol. 22, pp. 1961-1966, 2012.
[23] M. Joseph Fernandus, T. Senthilkumar, V. Balasubramanian & S. Rajakumar, “Optimising Diffusion Bonding Parameters to Maximize the Strength of AA6061 Aluminium and AZ31B Magnesium Alloy Joints”, Materials and Design, Vol. 33, pp. 31-41, 2012.
[24] M. Jafarian, A. Khodabandeh & S. A. Manafi, “Evaluation of diffusion welding of 6061 aluminum and AZ31 magnesium alloys without using an interlayer”, Materials and Design, Vol. 65, pp. 160-164, 2015.
[25] ASTM D1002–10, Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-Metal).
[26] ASTM E384-11e1, Standard Test Method for Knoop and Vickers Hardness of Materials.
[27] S. Chen, F. Ke, M. Zhou & Y. Bai, “Atomistic investigation of the effects of temperature and surface roughness on diffusion bonding between Cu and Al”, Acta Materialia. Vol. 55, pp. 3169-3175, 2007.