ایجاد آرایـه های نانوکامپوزیتی ZnO/CeO2 درون کانـال های مونولیت لانـه زنبوری کوردیریتی
محورهای موضوعی : عملیات حرارتی
1 - پژوهشگاه مواد و انرژی
کلید واژه: اکسید روی, آرایه های نانوکامپوزیتی, اکسید سریم, مونولیت لانه زنبوری کوردیریتی,
چکیده مقاله :
در این پـژوهش آرایـه های منظم نانـوکامپـوزیتی ZnO/CeO2 درون کانـال های مونولیت لانه زنبوری کوردیریتی توسط روش ساده، و مقرون به صرفه هیدروترمال سنتز شد. بدین منظور جـوانه های اولیه اکسیـد روی با جهـت گیـری ترجیحی در راستای جهت (2 0 0) درون کانال هـای مونولیت با روش غوطه وری و پخت در دمـای 350 درجه سانتی گراد ایجاد شد. متوسط اندازه این ذرات توسط نرم افزار Digimizer از تصاویر میکروسکوپ الکترونی روبشی حدوداً 60 نانومتر تخمین زده شد. نانوآرایه های اکسید روی با هم ترازی، فشـردگی و یکنـواختی بالا با قطر حدود 200 نـانومتر با استفـاده از روش نـوین سنتز هیـدروترمال دومرحـله ای در دمـای 80 درجه سانتی گراد درون کانال های مونولیت لانه زنبوری کوردیریتی سنتز شد. از نانوآرایه های اکسید روی به عنوان هسته برای پوشش سریا استفاده شد. پوشش نانومتری سریا بر روی نانومیله های اکسید روی در حین مرحله دوم سنتز هیدروترمال ایجاد شد. نتایج پراش اشعه ایکس تشکیل فازهای اکسید روی و سریا را اثبات می کند.
In this study, ordered ZnO/CeO2 nanocomposite arrays were synthesized within the monolithic cordierite honeycomb using a simple, green and cost effective hydrothermal method. Primary ZnO seeds with (0 0 2) texture were grown within honeycomb’s channels by dipping technique and subsequent heating of the substrates at 350˚C. The average diameter of ZnO seed particles was estimated to be 60 nm from SEM micrographs by the use of Digimizer software. Highly aligned, compact and homogenous ZnO nanorod arrays with the diameter of 200 nm were formed in monolithic cordierite honeycomb by a novel two-step hydrothermal method at 80 oC. ZnO nanorod arrays were used as a core for the preparation of ceria coating. A ceria coating was deposited on ZnO nanorods in the second step of hydrothermal synthesis. Formation of ZnO and ceria phases was also confirmed by X-ray diffraction results.
[1] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim & H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications”, Adv. Mater, Vol. 15, pp. 353-389, 2003.
[2] R. S. Devan, W. D. Ho, J. H. Lin, S.Y. Wu , Y. R. Ma, P. C. Lee & Y. Liou, “X-ray Diffraction Study of a Large-Scale and High-Density Array of One-Dimensional Crystalline Tantalum Pentoxide Nanorods”, Cryst. Growth Des, Vol. 8, pp. 4465-4468, 2008.
[3] Z. L. Wang & J. Song, “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays”, science, Vol. 312, pp. 242-246, 2006.
[4] C. J. Park, D. K. Choi, J. Yoo, G. C. Yi & C. J. Lee, “Enhanced field emission properties from well-aligned zinc oxide nanoneedles grown on the substrate”, Appl. Phys. Lett, Vol. 90, 083107, 2007.
[5] H. E. Prakasam, K. Shankar, M. Paulose, O. K. Varghese & C. A. Grimes, “A New Benchmark for TiO2 Nanotube Array Growth by Anodization”, J. Phys. Chem. C, Vol. 111, pp. 7235-7241, 2007.
[6] W. Wang, B. Zeng, J. Yang, B. Poudel, J. Huang, M. J. Naughton & Z. Ren, “Aligned Ultralong ZnO Nanobelts and Their Enhanced Field Emission”, Adv. Mater, Vol. 18, pp. 3275-3278, 2006.
[7] D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo & H. L. Tuller, “Ultrasensitive Chemiresistors Based on Electrospun TiO2 Nanofibers”, Nano Lett, Vol. 6, pp. 2009-2013, 2006.
[8] ح. رفیعی پور، م. ر. واعظی و ا. کاظم زاده " ساخت نانوالیاف هسته-پوسته اکسیدی به روش الکتروریسی یک مرحله ای" فرآیندهای نوین در مهندسی مواد، سال دهم، بهار 1395.
[9] ا. ظهور وحید کریمی، ج. وحدتی خاکی، س. م. زبرجد و ج. میرعباسی " بررسی امکان تولید نانولوله و نانوالیاف کربنی از طریق واکنش سنتز احتراقی در سیستم C-Al-Fe2O3" فرآیندهای نوین در مهندسی مواد، سال هشتم، زمستان 1393.
[10] M. A. Kumar, S. Jung & T. Ji, “Protein Biosensors Based on Polymer Nanowires, Carbon Nanotubes and Zinc Oxide Nanorods”, Sensors, Vol. 11, pp. 5087-5111, 2011.
[11] V. T. Le, T. N. L. Le & V. H. Nguyen, “Comparative study of gas sensor performance of SnO2 nanowires and their hierarchical nanostructures”, Sens. Actuators B, Vol. 150, pp. 112-119, 2010.
[12] R. S. Devan, S. Y. Gao, W. D. Ho, J. H. Lin, Y. R. Ma, P. S. Patil & Y. Liou, “Electrochromic properties of large-area and high-density arrays of transparent one-dimensional β-Ta2O5 Nano rods on indium-tin-oxide thin-films”, Appl. Phys. Lett, Vol. 98, 133117.
[13] D. K. Roh, R. Patel, S. H. Ahn, D. J. Kim & J. H. Kim, “Preparation of TiO2 nanowires/nanotubes using polycarbonate membranes and their uses in dye-sensitized solar cells”, Nanoscale, Vol. 3, pp. 4162-4169, 2011.
[14] Y. B. He, G. R. Li, Z. L. Wang, C. Y. Su & Y. X. Tong, “Single-crystal ZnO nanorod/amorphous and nanoporous metal oxide shell composites: Controllable electrochemical synthesis and enhanced supercapacitor performances”, Energy Environ. Sci, Vol. 4, pp. 1288-1292, 2011.
[15] Q. Zhang, H. Y .Wang, X. Jia, B. Liu & Y. Yang, “One-dimensional metal oxide nanostructures for heterogeneous catalysis”, Nanoscale, Vol. 5, pp. 7175-7183, 2013.
[16] T. Gao , Q. Li & T. Wang, “Sonochemical Synthesis, Optical Properties, and Electrical Properties of Core/Shell-Type ZnO Nanorod/CdS Nanoparticle Composites”, Chem. Mater, Vol. 17, pp. 887-892, 2005.
[17] W. I. Park, J. Yoo, D. W. Kim, G. C. Yi & M. Kim, “Fabrication and Photoluminescent Properties of Heteroepitaxial ZnO/Zn0.8Mg0.2O Coaxial Nanorod Heterostructures”, J. Phys. Chem, Vol. 110B, pp. 1516-1519, 2006.
[18] Y. J. Li, M. Y. Lu, C. W. Wang, K. M. Li & L. J. Chen, “ZnGa2O4 nanotubes with sharp cathodoluminescence peak”, Appl. Phys. Lett, Vol. 88, 143102, 2006.
[19] N. Chouhan, C. L. Yeh, S. F. Hu, R. S. Liu, W. S. Changd & K. H. Chene, “Photocatalytic CdSe QDs-decorated ZnO nanotubes: an effective photoelectrode for splitting water”, Chem. Commun, Vol. 47, pp. 3493-3495, 2011.
[20] Primo, T. Marino, A. Corma, R. Molinari, H. García, “Efficient Visible-Light Photocatalytic Water Splitting by Minute Amounts of Gold Supported on Nanoparticulate CeO2 Obtained by a Biopolymer Templating Method”, J. Am. Chem. Soc, Vol. 133, pp. 6930-6933, 2011.
[21] X. H. Lu, S. L. Xie, T. Zhai, Y. F. Zhao, P. Zhang, Y. L. Zhang & Y. X. Tong, “Monodisperse CeO2/CdS heterostructured spheres: one-pot synthesis and enhanced photocatalytic hydrogen activity”, RSC Adv. Vol. 1, pp. 1207-1210, 2011.
[22] L. Vivier & D. Duprez, “You have free access to this content Ceria-Based Solid Catalysts for Organic Chemistry, Chem Sus Chem, Vol. 3, pp. 654-678, 2010.
[23] P. X. Huang, F. Wu, B. L. Zhu, X. P. Gao, H. Y. Zhu, T. Y. Yan, W. P. Huang, S. H. Wu & D. Y. Song, “CeO2 Nanorods and Gold Nanocrystals Supported on CeO2 Nanorods as Catalyst”, J. Phys. Chem, Vol. 109B, pp. 19169-19174, 2005.
[24] R. W. Tarnuzzer, J. Colon, S. Patil & S. Seal, “Vacancy Engineered Ceria Nanostructures for Protection from Radiation-Induced Cellular Damage”, Nano Letters, Vol. 5, pp. 2573-2577, 2005.
[25] C. H. Zeng, S. Xie, M. Yu, Y. Yang, X. Lu & Y. Tong, “Facile synthesis of large-area CeO2/ZnO nanotube arrays for enhanced photocatalytic hydrogen evolution”, Journal of Power Sources, Vol. 247, pp. 545-550, 2014.
[26] W. Xiao, Y. Guo, Z. Ren, G. Wrobel, Z. Ren, T. Lu & P. X. Gao, “Mechanical-Agitation-Assisted Growth of Large-Scale and Uniform ZnO Nanorod Arrays within 3D Multichannel Monolithic Substrates”, Crystal Growth and Design, Vol. 13, pp. 3657-3664, 2013.
[27] J. W. Mullin, “Crystallization”, fourth ed, Butterworths: Heinemann, pp. 181-214, 2001.
[28] D. A. Porter & K. E. Esterling, “Phase Transformation in Metals and Alloys”, second edition, pp. 185- 197, 1992.
[29] S. Wang, Z. Ren, W. Song, Y. Guo, M. Zhang, S. L. Suib & P. X. Gao, “ZnO/perovskite core–shell nanorod array based monolithic catalysts with enhanced propane oxidation and material utilization efficiency at low temperature”, Catalysis Today, Vol. 258. pp. 549–555, 2015.