مقایسه رفتار خوردگی آلیاژ آلومینیوم 6061 جوش داده شده به روش FSLW و GTALW
محورهای موضوعی : خوردگی و حفاظت موادرضا بازرگان لاری 1 , احسان وفا 2
1 - معالی آباد کوی وحدت کوچه سوم پلاک 90
2 - معالی آباد کوی وحدت کوچه سوم پلاک 90
کلید واژه: جوشکاری هم زن اصطکاکی, جوشکاری قوس الکترود تنگستن - گاز, پلاریزاسیون تافل,
چکیده مقاله :
در این تحقیق، ورق های آلیاژ آلومینیوم 6061 به ضخامت پنج میلی متر، به روش های جوشکاری هم زن اصطکاکی (FSLW) و قوس الکترود تنگستن - گاز (GTALW) با طرح اتصال لبه روی هم به منظور مقایسه رفتار خوردگی آلیاژ به یکدیگر جوش داده شده اند. جوشکاری به صورت دو پاسه ( یک پاس از رو و یک پاس زیر) انجام شد. ساختار متالورژیکی نمونه ها بعد از متالوگرافی توسط تصاویر میکروسکوپی نوری و میکروسکوپ الکترونی روبشی( SEM ) و آنالیز کیفی (EDS) و همچنین ریز سختی بررسی شده است. رفتار خوردگی ناحیه جوش توسط نمودار پلاریزاسیون تافل در محلول 5/3 درصد NaCl بررسی شده است. آنالیز کیفی EDS وجود رسوبات حاوی آهن و سیلیسیم را در نمونه ها اثبات می کند. اندازه دانه نمونه های جوش داده شده به روش FSLW و GTALW در ناحیه جوش کاری شده به ترتیب حدود 5 و 18 میکرومتر مشخص گردید. دانه بندی نمونه ها در ناحیه جوش نمونه جوش داده شده به روش GTALW به دلیل انتقال حرارت جهت دار در حین جوشکاری، دندریتی بوده که در یک جهت رشد کرده بودند. نمودار های حاصل از آزمون تافل نشان داد که مقاومت به خوردگی هر دو نمونه جوشکاری شده کمتر از فلز پایه است. همچنین نمونه جوشکاری شده به روش FSLW مقاومت به خوردگی بهتری نسبت به نمونه GTALW داشته است. دلیل این امر می تواند تفاوت دانه بندی و سرعت سرد شدن نمونه ها پس از جوشکاری باشد.
In this paper wrought aluminum sheets with thickness of 5 mm were square butt welded by friction stir lap welding (FSLW) and gas tungsten arc lap welding (GTALW) methods to campare their corrosion behavior. of the welding zone was probed by tafel polarization curve. Optical metallography (OM) and scaninig electron microscop (SEM) were used to study morphology. Energy dispersive spectroscopy (EDS) were used to analysis different zone of the welds. EDS analysis proved deposits of iron and silicon in samples. FSLW and GTALW resulted in equiaxed grains of about 5 and 18 micrometr respectively, while GTALW caused dendritic structure of the welded region. To assessment mechanical properties, micro hardness test were accure. Resistance to corrosion was greater for the FSLW grains than the GTALW structure. In both cases, susceptibility to corrosion attack was greater in the welded region than the base metal section. . microhardness of FSLW specimen were grater than GTALW specimen.
[1] M. Jariyaboon, A. J. Davenport, R. Amba, B. J. Connolly, S. W. Williams & D. A. Price, “The effect of welding parameters on the corrosion behaviour of friction stir welded AA2024–T351”, Corros Sci, Vol. 49, pp. 877–909, 2007.
[2] G. Mathers, “The welding of aluminium and its alloys”, Abington: Woodhead Publishing Ltd and CRC Press LLC, 2002.
[3] T. S. Kumar, V. Balasubramanian & M. Y. Sanavullah, “Influences of pulsed current tungsten inert gas welding parameters on the tensile properties of AA 6061 aluminium alloy”, Mater Des, Vol. 28, pp. 2080–2092, 2007.
[4] R. Ahmad & M. A. Bakar, “Effect of a post-weld heat treatment on the mechanical and microstructure properties of AA6061 joints welded by the gas metal arc welding cold metal transfer method”, Mater Des, Vol. 32, pp. 5120–5126, 2011.
[5] کوکبی، "تکنولوژی فرابندهای جوشکاری"، انتشارات دانشگاه صنعتی شریف، تهران، 1385.
[6] D. A. Wadeson, X. Zhou, G. E. Thompson, P. Skeldon, L. Djapic Oosterkamp & G. Scamans, “Corrosion behaviour of friction stir welded AA7108 T79 aluminium alloy”, Corros Sci, Vol. 48, pp. 887–897, 2006.
[7] S. Maggiolino, Ch. Schmid, “Corrosion resistance in FSW and in MIG welding techniques of AA6XXX” J Mater Process Technol, Vol. 197, pp. 237–240, 2008.
[8] Squillace, A. De Fenzo, G. Giorleo & F. Bellucci, “A comparison between FSW and TIG welding techniques: modifications of microstructure and pitting corrosion resistance in AA 2024-T3 butt joints”, J Mater Process Technol, Vol. 152, pp. 97–105, 2004.
[9] R. S. Mishra & Z. Y. Ma, “Friction stir welding and processing”, Materials science and engineering R, Vol. 50, pp. 1-78, 2005.
[10] W. M. Thomas, “Friction stir welding”, international patent application PCT/GB92, Patent application GB9125978, Vol. 8, 1991.
[11] ASTM standard B0209M-04, Aluminum and magnesium alloys, specification for Aluminum and Aluminum-Alloy Sheet and Plate, Vol. 02. 02. 2005.
[12] ASM handbook. Properties and selection: nonferrous alloys and special purpose materials. Section: alloy and temper designation systems for aluminum and aluminum alloys, ASM, International, Vol. 2, 1997.
[13] ASM handbook. Properties and selection: nonferrous alloys and special purpose materials. Section: alloy and temper designation systems for aluminum and aluminum alloys, ASM, International, Vol. 3. 01, 1997.
[14] ASM Hand book. Properties and selection. Section: standard test methods for knop and vikers hardness of materials, ASM, international, Vol. 3, 1998.
[15] ASM Hand book. Properties and selection. Section: standard test methods for vickrs hardness of metallic materials, Asm, International, Vol. 3, 2010.
[16] Z. Suhuddin UFHR, S. Mironov, Y. S. Sato & K. H. Grain, “structure and texture evolution during friction stir welding of thin 6061 aluminum alloy sheets” Mater Sci Eng, Vol. 527A, pp. 1962-1969, 2010.
[17] Y. S. Sato, H. Kokowa, M. Enomoto & S. Jorgan, “Metallurgical and Materials Transaction”, Vol. 30A, pp. 3125, 1999.
[18] V. Fahimpour & S. K. Sadrnejad, “Corrosion behavior of aluminum 6061 alloy joined by friction stir welding and gas tungsten arc welding methods”, materials and Design, Vol. 39, pp. 329-333, 2012.
[19] C. H. Tang, F. T. Cheng & H. C. Man, “Effect of laser surface melting on the corrosion and cavitation erosion behaviors of a manganese–nickel–aluminum bronze”, Mater Sci Eng, Vol. 373A, pp. 195-203, 2004.
[20] ک. امینی، ف. غروی، ا چمی، م. امیرخانی و ح. قاسمی " بررسی رفتار خوردگی مقطع جوشکاری شده آلیاژ آلومینیوم به روش جوشکاری اصطکاکی اغتشاشی"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، شماره 4، ص 1-123، 1393.
[21] Handbook of Corrosion Data, Second Edition by Bruce D. Criag, 1995.
[22] W. Carrol & C. Breslin, British Corrosion Journal, Vol. 26, pp. 255-259, 1991.
[23] N. Birbilis & R. Buchheit, Electrochemical Society, Vol. 152, pp. 140-151, 2005.
[24] F. Gharavi, K. H. Motari & R. Yonus, “corrosion behavior of friction stir welded lap joint of AA6061-T6 Aluminum alloy”, Materials research, Vol. 43, pp. 314-322, 2015.
[25] W. R. Osorio, C. M. Freire & A. Garcia, “the effect of the dendritic microstructure on the corrosion resistance of Zn-Al alloys” J Alloys Compd, Vol. 395, pp.179-191, 2005.
[26] R. Ahmad & M. A. Bakar, “Effect of a post-weld heat treatment on the mechanical and microstructure properties of AA6265 joints welded by the gas metal arc welding cold metal transfer method” Mater Des, Vol. 308, pp. 1502-1506, 2011.