بررسی رفتار کار گرم فوم کامپوزیتی سلول بسته Al/SiCp
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدآرمین دهنوی 1 , غلامرضا ابرهیمی 2 , مسعود گلستانی پور 3
1 - جهاد دانشگاهی مشهد
2 - استاد دانشگاه حکیم سبزواری، سبزوار
3 - عضو هیأت علمی و گروه پژوهشی مواد جهاد دانشگاهی مشهد
کلید واژه: فوم آلومینیوم, "تغییر شکل گرم", "ذرات SiC", "سلول بسته",
چکیده مقاله :
در این پژوهش با استفاده از روش فوم سازی مستقیم مذاب با کمک عامل فوم ساز کربنات کلسیم (CaCO3) و با مقادیر مختلف ذرات پایدارساز و تقویتکننده SiC فوم کامپوزیتی زمینه آلومینیومی تولید گردیده است. چگالی فومهای تولیدی 0.5 گرم بر سانتیمتر مکعب اندازهگیری شد. سپس در محدوده حرارتی مختلف 100، 200، 300 و 400 درجه سانتی گراد و با نرخ کرنش متوسط 0.1s-1 تحت تغییر شکل فشار تک محوری قرار داده شد. نتایج حاصل نشان میدهد که در دمای ثابت تغییر شکل، با افزایش کسر حجمی ذرات SiC، تنش تسلیم، تنش مسطح و میزان جذب انرژی افزایش، و با افزایش دما کاهش می یابد. همچنین افزایش میزان ذرات تقویتکننده سبب دندانه ای شدن منحنی سیلان شده است، که بیانکننده افزایش تردی دیواره سلولی فوم میباشد.
In this research, closed-cell aluminum foams reinforced by SiC particles were fabricated using direct melt-foaming method and CaCO3 as a blowing agent. The effect of adding reinforcement particles on mechanical properties of foams was investigated by adding different volume percentages of SiC particles (3%, 6%, and 10%). To obtain the mechanical properties of produced foams, uniaxial compression test was carried on samples at different temperature (100°C, 200°C, 300°C, and 400°C) and constant strain rate equal to 0.1s-1. The compression tests result show that at the constant temperature, the yield stress, Plateau stress and energy absorption stresses of composite foams will increase by increasing the volume percentage of SiC particles and decrease with increase in temperature. Reinforcement particles also increase the number of indentation in the stress-strain curve of foams, which reflects increasing brittleness of the foams’ cell wall.
[1] J. Banhart, “Manufacture, characterization and application of cellular metals and metallic foamsˮ, Progress in Material Science, Vol. 46, pp. 559-632, 2001.
[2] H. P, Degischer & B, Kriszt, “Handbook of cellular metalsˮ, Weinheim, Wiley-VCH, 2002.
[3] M. S. Aly, “Behavior of closed cell aluminium foams upon compressive testing at elevated temperatures: Experimental resultsˮ, Materials Letters, Vol. 61, pp. 3138–3141, 2007.
[4] C. M. Cady, G. T. Gray, C. Liu, M. L. Lovato & T. Mukai, “Compressive properties of a closed-cell aluminum foam as a function of strain rate and temperatureˮ, Materials Science and Engineering, Vol. 525A, pp. 1–6, 2009.
[5] S. Sahu, M. D. Goel, D. P. Mondal & S. Das, “High temperature compressive deformation behavior of ZA27–SiC foamˮ, Materials Science and Engineering,Vol. 607A, pp. 162–172, 2014.
[6] P. Wang, S. Xu, Z. Li, J. Y, H. Zheng & S. Hu, “Temperature effects on the mechanical behavior of aluminum foam under dynamic loadingˮ, Materials Science and Engineering, Vol. 559A, pp. 174-179, 2014.
[7] M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson & H. N. G. Wadley, “Metal Foams: A Design Guideˮ, Butterworth Heinemann, 2000.
[8] D. P. Myriounis, S. T. Hasan & T. E. Matikas, “Microdeformation behavior of Al–SiC metal matrix compositesˮ, Composite Interfaces, Vol. 15, pp. 495–514, 2008.
[9] A. K. Ghosh, “On the measurement of strain-rate sensitivity for conventional and ultra-fine grain alloys Materˮ, Materials Science and Engineering, Vol. 463A, pp. 36–40, 2007.
[10] M. T. Kiser, F. W. Zok & D, S. Wilkinson, “Plastic flow and fracture of a particulate metal matrix compositeˮ, Acta Material, Vol. 44, pp. 3465–3476, 1996.
[11] C. Chen, T. J. Lu & N. A. Fleck, “Effect of imperfections on the yielding of two-dimensional foamsˮ, Journal of the Mechanics and Physics of Solids, Vol. 47, pp. 2235–2272, 1999.
[12] J. Banhart, “Metal Foams: Production and Stabilityˮ, Advanced Engineering Materials, Vol. 8, No. 9, 2006.
[13] J. J. Bikerman, J. M. Perri, R. B. Booth & C. C. Currie, “Foams: Theory and Industrial Applicationsˮ, Reinhold, New York, 1953.
[14] D. C. Curran, Ph.D. Thesis, “Aluminium Foam Production using Foaming Agentˮ, Cambridge, 2003.
[15] N. Babcsán, J. Banhart & D. Leitlmeier, “Metal foams – manufacture and physics of foaming, International Conference Advanced metallic materialsˮ, Smolenice, Slovakia, 2003.
[16] م. گلستانی پور، م. توکلی، س. م. زبرجد، ا. باباخانی و ب. نادری، "بررسی جذب انرژی پنل ساندویچی با هسته فوم آلومینیوم تحت آزمون سوراخ کاری"، مجله مواد نوین، جلد ۳، شماره ۲، صفحه ۳۸-۲۵، زمستان، 1391.
[17] آ. دهنوی، م. گلستانی پور، ح. خدیوی آیسک، م. ص. ابروی، م. ملک جعفریان و م. حسین زاده، "ررسی جذب انرژی پنل ساندویچی با هسته فوم آلومینیوم تحت آزمون سوراخ کاری"، مجله مواد نوین، جلد ۸، شماره ۴، صفحه 97-89، زمستان 1393.
_||_