Removal of Lead and Mercury from Water Using Nanoparticles: A Concise Review on Adsorption
محورهای موضوعی :
Nusrat Tonu
1
,
Md. Tanzirul Tanaz
2
,
Md. Ismail Hossain
3
,
Sumon Chakrabarty
4
,
Palash Dhar
5
,
Mohammad Yousuf
6
,
Parbhej Ahamed
7
1 - Chemistry Discipline, Khulna University, Khulna-9208, Bangladesh
2 - Chemistry Discipline, Khulna University, Khulna-9208, Bangladesh
3 - BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research, Rajshahi-6206, Bangladesh
4 - Chemistry Discipline, Khulna University, Khulna-9208, Bangladesh
5 - Chemistry Discipline, Khulna University, Khulna-9208, Bangladesh
6 - Department of Chemistry, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh
7 - Department of Chemistry, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh
تاریخ دریافت : 1402/06/28
تاریخ پذیرش : 1402/10/09
تاریخ انتشار : 1402/12/11
کلید واژه:
nanoparticles,
Adsorption,
Lead,
Remediation,
Mercury,
چکیده مقاله :
Water is the most essential natural resources in the ecosystem and vital for the existence of all living beings as well as humans growth. Due to the rapid industrialization, water pollution is now the most vital matter of concern. A common ecological issue is water pollution with heavy metals, such as lead (Pb) and mercury (Hg), which has become a major environmental problem due to the detrimental consequences on human health and ecosystems. Additionally, research into new and more effective water treatment methods is being driven by the persistence, toxicity, and accumulation of Pb and Hg in the human body. This is done to reduce the amount of Pb and Hg in water. To remove or lower the amount of Pb and Hg in water, several researchers make substantial use of the adsorption. Adsorption continues to be a practical method with flexible design and execution. In the past few years, nanotechnology has come to be a promising approach for the remediation of water polluted with these hazardous metals by adsorption. It will become more and more difficult to deploy technologically sophisticated alternative water treatments to meet the growing demand for lower levels of Pb and Hg in drinking water using current methods. Compared it to alternative approaches, nanotechnology has a lot of benefits. Nanoparticles, owing to their unique physicochemical properties, have garnered attention as competent adsorbents for Pb and Hg removal from water. This review gives an in-depth account of several nanoparticle preparation methods. The review also highlights the recent advancements in the application of different nanoparticles for the remediation of Pb and Hg from aquatic environments.
منابع و مأخذ:
Dhar P.K., Uddin M.N., Ara M.H., Tonu N.T., 2019. Heavy metal concentration in vegetables, fruits and cereals and associated health risk of human in Khulna, Bangladesh. JWES. 3(1), 453-459.
Syed A., Kumar G., Tonu N.T., Chakrabarty S., Mahiuddin M., Hoque, K., 2020. An Investigation of the Adsorption Capacity of Carbon Particle for the Removal of Fe3+ ion from Water. Int J Chem Stud. 8(2), 55-61.
Cheraghi M., Lorestani B., Yousefi N., 2009. Effect of waste water on heavy metal accumulation in Hamedan Province vegetables. Int J Botany. 5(2), 109-193.
Yang J., Hou B., Wang J., Tian B., Bi J., Wang N., Huang X., 2019. Nanomaterials for the removal of heavy metals from wastewater. J Nanomater. 9(3), 424.
Upadhyay U., Sreedhar I., Singh S.A., Patel C.M., Anitha K.L., 2021. Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydr Polym. 251(117000), 117000.
Doyo A.N., Kumar R., Barakat M.A., 2023. Recent advances in cellulose, chitosan, and alginate based biopolymeric composites for adsorption of heavy metals from wastewater. J Taiwan Inst Chem Eng. 151(105095), 105095.
Kharissova O.V., Kharisov B.I., Oliva González C.M., Méndez Y.P., López I., 2019. Greener synthesis of chemical compounds and materials. R. Soc. Open Sci. 6(11), 191378.
Chai W.S., Cheun J.Y., Kumar P.S., Mubashir M., Majeed Z., Banat F., Ho S.H., Show P.L., 2021. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J Clean Prod. 296(126589), 126589.
Mahmadur M., 2021. Extraction of nanocellulose from Banana Rachis (Agro-waste) and preparation of nanocellulose-Clay nanofilter for the Industrial wastewater purification. J Bioremediat Biodegrad. 12(2), 1-2.
Buzea C., Pacheco I., 2017. Nanomaterial and nanoparticle: origin and activity. Nanoscience and plant–soil systems. 71-112.
Lim J.Y., Mubarak N.M., Abdullah E.C., Nizamuddin S., Khalid, M., 2018. Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals—A review. J Ind Eng Chem. 66, 29-44.
Vunain E., Mishra A.K., Mamba B.B., 2016. Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: A review. Int J Biol Macromol. 86, 570-586.
Hezbullah M., Sultana S., Chakraborty S.R., Patwary M.I., 2016. Heavy metal contamination of food in a developing country like Bangladesh: An emerging threat to food safety. JTEHS. 8(1), 1-5.
Salem H.M., Eweida A.E., Farag A., 2000. Heavy Metals in Drinking Water and Their Environmental Impact on Human Health. Proceedings of the International Conference for Environmental Hazards Mitigation, Giza, September 9-12, 542-556.
Srivastava N.K., Majumder C.B., 2008. Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J Hazard Mater. 151(1), 1-8.
Burakov A.E., Galunin E.V., Burakova I.V., Kucherova A.E., Agarwal S., Tkachev A.G., Gupta V.K., 2018. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review Ecotoxicol Environ Saf. 148, 702–712.
Baldwin D.R., Marshall W.J., 1999. Heavy Metal Poisoning and its Laboratory Investigation. Ann Clin Biochem. 36(3), 267–300.
Akpor O.B., 2014. Heavy metal pollutants in wastewater effluents: Sources, effects and remediation. J Adv Biosci Bioeng. 2(4), 37.
Harvey P.J., Handley H.K., Taylor M.P., 2015. Identification of the sources of metal (lead) contamination in drinking waters in north-eastern Tasmania using lead isotopic compositions. ESPR. 22(16), 12276–12288.
Babel S., Kurniawan T.A., 2003. Various treatment technologies to remove arsenic and mercury from contaminated groundwater: an overview. In: Proceedings of the First International Symposium on Southeast Asian Water Environment, Bangkok, Thailand, October 24-25, 433–440.
Raikwar M.K., Kumar P., Singh M., Singh A., 2008. Toxic effect of heavy metals in livestock health. Vet World. 1(1), 28.
Mohammadi M.J., Yari A.R., Saghazadeh M., Sobhanardakani S., Geravandi S., Afkar A., Omidi Khaniabadi Y., 2018. A health risk assessment of heavy metals in people consuming Sohan in Qom, Iran. Toxin Rev. 37(4), 278-286.
Website: https://www.britannica.com/science/lead-chemical-element (Accessed August 22, 2023)
De A.K., 2010. Environmental Chemistry. Pragati Prakashan, New Delhi, India, 114 – 115.
Soyottonarayon, 2013. Introduction to biochemistry.S. Chad and Company Limited, New Delhi, India, 307-311.
Sreekala G., Beevi A.F., Resmi R., Beena B., 2021. Removal of lead (II) ions from water using copper ferrite nanoparticles synthesized by green method. Mater Today: Proc. 45, 3986-3990.
Dhar P.K., Naznin A., Hossain M.S., Hasan M., 2021. Toxic element profile of ice cream in Bangladesh: a health risk assessment study. Environ Monit Assess. 193(7), 1-15.
Lisha K.P., Anshup Pradeep T., 2009. Towards a practical solution for removing inorganic mercury from drinking water using gold nanoparticles. Gold Bulletin. 42, 144-152.
Website: https:// en.wikipedia. org/wiki /Mercury _(element) (Accessed August 22, 2023)
Zahir F., Rizwi S.J., Haq S.K., Khan R.H., 2005. Low dose mercury toxicity and human health. Environ Toxicol Pharmacol. 20(2), 351-360.
Barregard L., Rekić D., Horvat M., Elmberg L., Lundh T., Zachrisson O., 2011. Toxicokinetics of mercury after long-term repeated exposure to thimerosal-containing vaccine. Toxicol Sci. 120(2), 499-506.
Baig N., Kammakakam I., Falath W., 2021. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater Adv. 2(6), 1821-1871.
Vollath D., 2008. Nanomaterials an introduction to synthesis, properties and application. Environ Eng Manag J. 7(6), 865-870.
Yang J., Hou B., Wang J., Tian B., Bi J., Wang N., Huang X., 2019. Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials. 9(3), 424.
Lefevre E., Bossa N., Wiesner M.R., Gunsch C.K., 2016. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): behavior, transport and impacts on microbial communities. Sci Total Environ. 565, 889-901.
Khin M.M., Nair A.S., Babu V.J., Murugan R., Ramakrishna S., 2012. A review on nanomaterials for environmental remediation. Energy Environ Sci. 5(8), 8075-8109.
Jiang Z., Lv L., Zhang W., Du Q., Pan B., Yang L., Zhang Q., 2011. Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups. Water Res. 45(6), 2191-2198.
Saleh T.A., 2020. Nanomaterials: Classification, properties, and environmental toxicities. Environ Technol Innov. 20, 101067.
Zhuang S., Lee E.S., Lei L., Nunna B.B., Kuang L., Zhang W., 2016. Synthesis of nitrogen‐doped graphene catalyst by high‐energy wet ball milling for electrochemical systems.Int J Energy Res. 40(15), 2136-2149.
Yadav T.P., Yadav R.M., Singh D.P., 2012. Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. J Nanosci Nanotechnol. 2(3), 22-48.
Ostermann R., Cravillon J., Weidmann C., Wiebcke M., Smarsly B.M., 2011. Metal–organic framework nanofibers via electrospinning. Chem. Comm. 47(1), 442-444.
Kumar P.S., Sundaramurthy J., Sundarrajan S., Babu V.J., Singh G., Allakhverdiev S.I., Ramakrishna S., 2014. Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energy Environ Sci. 7(10), 3192-3222.
Pimpin A., Srituravanich W., 2012. Review on micro-and nanolithography techniques and their applications. Eng J. 16(1), 37-56.
Nie M., Sun K., Meng D.D., 2009. Formation of metal nanoparticles by short-distance sputter deposition in a reactive ion etching chamber. J Appl Phys. 106(054314), 1-5.
Zhang D., Ye K., Yao Y., Liang F., Qu T., Ma W., Watanabe T., 2019. Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber. Carbon. 142, 278-284.
Jones J.M., Malcolm R.P., Thomas K.M., Botrell S.H., 1996. The anode deposit formed during the carbon-arc evaporation of graphite for the synthesis of fullerenes and carbon nanotubes. Carbon. 34(2), 231-237.
Liang F., Tanaka M., Choi S., Watanabe T., 2017. Formation of different arc-anode attachment modes and their effect on temperature fluctuation for carbon nanomaterial production in DC arc discharge. Carbon. 117, 100-111.
Liang F., Shimizu T., Tanaka M., Choi S., Watanabe T., 2012. Selective preparation of polyhedral graphite particles and multi-wall carbon nanotubes by a transferred arc under atmospheric pressure. Diam Relat Mater. 30, 70-76.
Amendola V., Meneghetti M., 2009. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. PCCP. 11(20), 3805-3821.
Zhang J., Chaker M., Ma D. 2017. Pulsed laser ablation based synthesis of colloidal metal nanoparticles for catalytic applications. J Colloid Interface Sci. 489, 138-149.
Ismail R.A., Mohsin M.H., Ali A.K., Hassoon K.I., Erten-Ela S., 2020. Preparation and characterization of carbon nanotubes by pulsed laser ablation in water for optoelectronic application. Phys. E: Low-Dimens. Syst. Nanostructures. 119, 113997.
Chrzanowska J., Hoffman J., Małolepszy A., Mazurkiewicz M., Kowalewski T.A., Szymanski Z., Stobinski L., 2015. Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength. Phys. Status Solidi B. 252(8), 1860-1867.
Duque J.S., Madrigal B.M., Riascos H., Avila Y.P., 2019. Colloidal metal oxide nanoparticles prepared by laser ablation technique and their antibacterial test. Colloids and Interfaces. 3(1), 25.
Su S.S., Chang, I., 2018. Review of production routes of nanomaterials. Commercialization of nanotechnologies – a case study approach, 15-29.
Jones A.C., Hitchman M.L. (Eds.)., 2009. Chemical vapour deposition: precursors, processes and applications. RSC.
Kolahalam L.A., Viswanath I.K., Diwakar B.S., Govindh B., Reddy V., Murthy Y.L.N., 2019. Review on nanomaterials: Synthesis and applications. Mater. Today: Proc. 18, 2182-2190.
Fu R., Yang Y., Xu Z., Zhang X., Guo X., Bi D., 2015. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI). Chemosphere. 138, 726-734.
Fu R., Yang Y., Xu Z., Zhang X., Guo X., Bi D., 2015. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI). Chemosphere. 138, 726-734.
Tosco T., Papini M.P., Viggi C.C., Sethi R., 2014. Nanoscale zerovalent iron particles for groundwater remediation: a review. J Clean Prod. 77, 10-21.
Bhowmick S., Chakraborty S., Mondal P., Van Renterghem W., Van den Berghe S., Roman-Ross G., Iglesias M., 2014. Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism. J Chem Eng. 243, 14-23.
Gu P., Zhang S., Li X., Wang X., Wen T., Jehan R., Wang X., 2018. Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ Pollut. 240, 493-505.
Geary S.M., Morris A.S., Salem A.K., 2016. Assessing the effect of engineered nanomaterials on the environment and human health. JACI. 138(2), 405-408.
Abbas Q., Yousaf B., Ali M.U., Munir M.A.M., El-Naggar A., Rinklebe J., Naushad M., 2020. Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review Environ Int. 138, 105646.
Liu W., Tian S., Zhao X., Xie W., Gong Y., Zhao D., 2015. Application of stabilized nanoparticles for in situ remediation of metal-contaminated soil and groundwater: a critical review. Curr Pollut Rep. 1, 280-291.
Cai C., Zhao M., Yu Z., Rong H., Zhang C., 2019. Utilization of nanomaterials for in-situ remediation of heavy metal (loid) contaminated sediments: A review. Sci Total Environ. 662, 205-217.
Yu G., Wang X., Liu J., Jiang P., You S., Ding N., Lin F., 2021. Applications of nanomaterials for heavy metal removal from water and soil: A review. Sustainability. 13(2), 713.
Yang J., Hou B., Wang J., Tian B., Bi J., Wang N., Huang X., 2019. Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials. 9(3), 424.
Ali H., Khan E., Ilahi I., 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem. 2019(6730305), 1-14.
Wang L.K., Hung Y.T., Shammas N.K. (Eds.)., 2005. Physicochemical treatment processes (3). Totowa, NJ: Humana Press.
BrbootI M.M., Abid B.A., Al-ShuwaikI N.M., 2011. Removal of heavy metals using chemicals precipitation. Eng Technol J. 29(3), 595-612
Meunier N., Drogui P., Montané C., Hausler R., Blais J.F., Mercier G., 2006. Heavy metals removal from acidic and saline soil leachate using either electrochemical coagulation or chemical precipitation. Int J Environ Eng. 132(5), 545-554.
Albuquerque C.F., Luna-Finkler C.L., Rufino R.D., Luna J.M., de Menezes C.T., Santos V. A., Sarubbo L. A., 2012. Evaluation of biosurfactants for removal of heavy metal ions from aqueous effluent using flotation techniques. IRECHE. 4(2), 156-161.
Hoseinian F.S., Irannajad M., Nooshabadi A.J., 2015. Ion flotation for removal of Ni (II) and Zn (II) ions from wastewaters. Int J Miner Process. 143, 131-137.
Rengaraj S., Yeon K.H., Moon S.H., 2001. Removal of chromium from water and wastewater by ion exchange resins. J Hazard Mater. 87(1-3), 273-287.
Al-Enezi G., Hamoda M.F., Fawzi N., 2004. Ion exchange extraction of heavy metals from wastewater sludges. J Environ Sci Health A. 39(2), 455-464.
Shrestha R., Ban S., Devkota S., Sharma S., Joshi R., Tiwari A.P., Joshi M.K., 2021. Technological trends in heavy metals removal from industrial wastewater: A review. J Environ Chem Eng. 9(4), 105688.
Tran T.K., Leu H.J., Chiu K.F., Lin C.Y., 2017. Electrochemical treatment of heavy metal‐containing wastewater with the removal of COD and heavy metal ions.J Chin Chem Soc. 64(5), 493-502.
Peters R.W., Shem L., 1993. Separation of heavy metals: removal from industrial wastewaters and contaminated soil.
Abdel-Raouf M.S., Abdul-Raheim A.R.M., 2017. Removal of heavy metals from industrial waste water by biomass-based materials: A review. Mercury. 8, 15-19.
Bahram M., Mohseni N., Moghtader M., 2016. An introduction to hydrogels and some recent applications: Chapter 2: In Emerging concepts in analysis and applications of hydrogels. pp. 9-38
Nqombolo A., Mpupa A., Moutloali R.M., Nomngongo P.N., 2018. Wastewater treatment using membrane technology. Wastewater and water quality. 29, 30-40.
Elbedwehy A.M., Abou-Elanwar A.M., Ezzat A.O., Atta A.M., 2019. Super effective removal of toxic metals water pollutants using multi functionalized polyacrylonitrile and arabic gum grafts. Polymers. 11(12), 1938.
Veglio F., Beolchini F., 1997. Removal of metals by biosorption: a review. Hydrometallurgy. 44(3), 301-316.
Kwak H.W., Lee K.H. 2018. Polyethylenimine-functionalized silk sericin beads for high-performance remediation of hexavalent chromium from aqueous solution. Chemosphere. 207, 507-516.
Rodrigues M.A.S., Amado F.D.R., Xavier J.L.N., Streit K.F., Bernardes A.M., Ferreira J.Z., 2008. Application of photoelectrochemical–electrodialysis treatment for the recovery and reuse of water from tannery effluents. J Clean Prod. 16(5), 605-611.
Zhang F.S., Itoh H., 2006. Photocatalytic oxidation and removal of arsenite from water using slag-iron oxide-TiO2 adsorbent. Chemosphere. 65(1), 125-131.
Abbas A., Al-Amer A.M., Laoui T., Al-Marri M.J., Nasser M.S., Khraisheh M., Atieh M.A., 2016. Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep Purif Technol. 157, 141-161.
Renu., Agarwal M., Singh K., 2017. Heavy metal removal from wastewater using various adsorbents: a review. Journal of Water Reuse and Desalination. 7(4), 387-419.
Albuquerque C.F., Luna-Finkler C.L., Rufino R.D., Luna J.M., de Menezes C.T., Santos V.A., Sarubbo L.A., 2012. Evaluation of biosurfactants for removal of heavy metal ions from aqueous effluent using flotation techniques. IRECHE. 4(2), 156-161.
Azimi A., Azari A., Rezakazemi M., Ansarpour, M., 2017. Removal of heavy metals from industrial wastewaters: a review. Chem Bio Eng Reviews. 4(1), 37-59.
Lai K.C., Lee L.Y., Hiew B.Y.Z., Thangalazhy-Gopakumar S., Gan S., 2019. Environmental application of three-dimensional graphene materials as adsorbents for dyes and heavy metals: Review on ice-templating method and adsorption mechanisms. J Environ Sci. 79, 174-199.
Vicente-Martínez Y., Caravaca M., Soto-Meca A., De Francisco-Ortiz O., Gimeno F., 2020. Graphene oxide and graphene oxide functionalized with silver nanoparticles as adsorbents of phosphates in waters. A comparative study. Sci. Total Environ. 709, 136111.
Zhang S., Shao T., Kose H.S., Karanfil T., 2010. Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes. EST. 44(16), 6377-6383.
Bassyouni M., Mansi A.E., Elgabry A., Ibrahim B.A., Kassem O.A., Alhebeshy R., 2020. Utilization of carbon nanotubes in removal of heavy metals from wastewater: A review of the CNTs’ potential and current challenges. Appl Phys A. 126, 1-33.
Liu J., Huang Z., Sun J., Zou Y., Gong B. 2020. Enhancing the removal performance of Cd (II) from aqueous solutions by NaA zeolite through doped thiourea reduced GO which is trapped within zeolite crystals. J Alloys Compd. 815, 152514.
Gupta V.K., Kumar R., Nayak A., Saleh T.A., Barakat M.A., 2013. Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv. Colloid Interface Sci. 193, 24-34.
Power A.C., Gorey B., Chandra S., Chapman J., 2018. Carbon nanomaterials and their application to electrochemical sensors: a review. Nanotechnol Rev. 7(1), 19-41.
Kabbashi N.A., Atieh M.A., Al-Mamun A., Mirghami M.E., Alam M.D.Z., Yahya N., 2009. Kinetic adsorption of application of carbon nanotubes for Pb (II) removal from aqueous solution. J Environ Sci. 21(4), 539-544.
Shin K.Y., Hong J. Y., Jang J., 2011. Heavy metal ion adsorption behavior in nitrogen-doped magnetic carbon nanoparticles: isotherms and kinetic study. J Hazard Mater. 190(1-3), 36-44.
Li Y.H., Zhu Y., Zhao Y., Wu D., Luan Z., 2006. Different morphologies of carbon nanotubes effect on the lead removal from aqueous solution. Diam Relat Mater. 15(1), 90-94.
Li Y.H., Ding J., Luan Z., Di Z., Zhu Y., Xu C., Wei B., 2003. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon. 41(14), 2787-2792.
Li Z., Chen J., Ge Y., 2017. Removal of lead ion and oil droplet from aqueous solution by lignin-grafted carbon nanotubes. J Chem Eng. 308, 809-817.
Yang S., Hu J., Chen C., Shao D., Wang X., 2011. Mutual effects of Pb (II) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions. Environ Sci Technol. 45(8), 3621-3627.
Yu X.Y., Luo T., Zhang Y.X., Jia Y., Zhu B.J., Fu X.C., Huang X.J., 2011. Adsorption of lead (II) on O2-plasma-oxidized multiwalled carbon nanotubes: thermodynamics, kinetics, and desorption. ACS Appl Mater Interfaces. 3(7), 2585-2593.
Tehrani M.S., Azar P.A., Namin P.E., Dehaghi S.M., 2013. Removal of lead ions from wastewater using functionalized multiwalled carbon nanotubes with tris (2-aminoethyl) amine. J Environ Prot. 4(6), 1-8.
Alijani H., Beyki M.H., Shariatinia Z., Bayat M., Shemirani F., 2014. A new approach for one step synthesis of magnetic carbon nanotubes/diatomite earth composite by chemical vapor deposition method: application for removal of lead ions. J Chem Eng. 253, 456-463.
Wang Y., Shi L., Gao L., Wei Q., Cui L., Hu L., Du B., 2015. The removal of lead ions from aqueous solution by using magnetic hydroxypropyl chitosan/oxidized multiwalled carbon nanotubes composites. J Colloid Interface Sci. 451, 7-14.
Saleh T.A., 2016. Nanocomposite of carbon nanotubes/silica nanoparticles and their use for adsorption of Pb (II): from surface properties to sorption mechanism. Desalination and Water Treatment. 57(23), 10730-10744.
Kumar G., Tonu N.T., Dhar P.K., Mahiuddin M., 2021. Removal of Fe3+ Ions from Wastewater by Activated Borassus flabellifer Male Flower Charcoal. Pollution. 7(3), 693-707.
Zhao X., Jia Q., Song N., Zhou W., Li Y., 2010. Adsorption of Pb (II) from an aqueous solution by titanium dioxide/carbon nanotube nanocomposites: kinetics, thermodynamics, and isotherms. J Chem Eng Data. 55(10), 4428-4433.
Tofighy M.A., Mohammadi T., 2011. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J Hazard Mater. 185(1), 140-147.
Zhang C., Sui J., Li J., Tang Y., Cai W., 2012. Efficient removal of heavy metal ions by thiol-functionalized superparamagnetic carbon nanotubes. J Chem Eng. 210, 45-52.
Saadat S., Karimi-Jashni A., Doroodmand M.M., 2014. Synthesis and characterization of novel single-walled carbon nanotubes-doped walnut shell composite and its adsorption performance for lead in aqueous solutions. J Environ Chem Eng. 2(4), 2059-2067.
Tawabini B., Al-Khaldi S., Atieh M., Khaled M., 2010. Removal of mercury from water by multi-walled carbon nanotubes. Water science and technology. 61(3), 591-598.
Shin K.Y., Hong J.Y., Jang J., 2011. Heavy metal ion adsorption behavior in nitrogen-doped magnetic carbon nanoparticles: isotherms and kinetic study. J Hazard Mater. 190(1-3), 36-44.
Chen P.H., Hsu C.F., Tsai D.D.W., Lu Y.M., Huang W.J. 2014. Adsorption of mercury from water by modified multi-walled carbon nanotubes: adsorption behaviour and interference resistance by coexisting anions. Environ Technol. 35(15), 1935-1944.
Hadavifar M., Bahramifar N., Younesi H., Li Q., 2014. Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups. J Chem Eng. 237, 217-228.
Moghaddam H.K., Pakizeh M., 2015. Experimental study on mercury ions removal from aqueous solution by MnO2/CNTs nanocomposite adsorbent. J Ind Eng Chem. 21, 221-229.
Gupta A., Vidyarthi S.R., Sankararamakrishnan N., 2014. Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes. J Hazard Mater. 274, 132-144.
Ghorbani M., Seyedin O., Aghamohammadhassan M., 2020. Adsorptive removal of lead (II) ion from water and wastewater media using carbon-based nanomaterials as unique sorbents: A review. J Environ Manage. 254, 109814.
Ren Y., Yan N., Feng J., Ma J., Wen Q., Li N., Dong Q., 2012. Adsorption mechanism of copper and lead ions onto graphene nanosheet/δ-MnO2. Mater Chem Phys. 136(2-3), 538-544.
Deng X., Lü L., Li H., Luo F., 2010. The adsorption properties of Pb (II) and Cd (II) on functionalized graphene prepared by electrolysis method. J Hazard Mater. 183(1-3), 923-930.
Jabeen H., Kemp K.C., Chandra V., 2013. Synthesis of nano zerovalent iron nanoparticles–graphene composite for the treatment of lead contaminated water. J Environ Manage. 130, 429-435.
Zhou F., Feng X., Yu J., Jiang, X., 2018. High performance of 3D porous graphene/lignin/sodium alginate composite for adsorption of Cd (II) and Pb (II). ESPR. 25, 15651-15661.
Yang L., Li Z., Nie G., Zhang Z., Lu X., Wang C., 2014. Fabrication of poly (o-phenylenediamine)/reduced graphene oxide composite nanosheets via microwave heating and their effective adsorption of lead ions. Appl Surf Sci. 307, 601-607.
Liu C., Zhang D., Zhao L., Lu X., Zhang P., He S., Tang X., 2016. Synthesis of a thiacalix [4] arenetetrasulfonate-functionalized reduced graphene oxide adsorbent for the removal of lead (II) and cadmium (II) from aqueous solutions. RSC Adv. 6(114), 113352-113365.
Du Y., Wang J., Zou Y., Yao W., Hou J., Xia L., Wang X., 2017. Synthesis of molybdenum disulfide/reduced graphene oxide composites for effective removal of Pb (II) from aqueous solutions. Sci bull. 62(13), 913-922.
Guo T., Bulin C., Li B., Zhao Z., Yu H., Sun H., Zhang B., 2018. Efficient removal of aqueous Pb (II) using partially reduced graphene oxide-Fe3O4. Adsorp Sci Technol. 36(3-4), 1031-1048.
Fu W., Huang Z., 2018. Magnetic dithiocarbamate functionalized reduced graphene oxide for the removal of Cu (II), Cd (II), Pb (II), and Hg (II) ions from aqueous solution: Synthesis, adsorption, and regeneration. Chemosphere. 209, 449-456.
Xu W., Song Y., Dai K., Sun S., Liu G., Yao J., 2018. Novel ternary nanohybrids of tetraethylenepentamine and graphene oxide decorated with MnFe2O4 magnetic nanoparticles for the adsorption of Pb (II). J Hazard Mater. 358, 337-345.
Zhang F., Song Y., Song S., Zhang R., Hou W., 2015. Synthesis of magnetite–graphene oxide-layered double hydroxide composites and applications for the removal of Pb (II) and 2, 4-dichlorophenoxyacetic acid from aqueous solutions. ACS Appl Mater Interfaces. 7(13), 7251-7263.
Wang X., Chen Z., Yang S., 2015. Application of graphene oxides for the removal of Pb (II) ions from aqueous solutions: Experimental and DFT calculation. J Mol Liq. 211, 957-964.
Huang X., Pan M., 2016. The highly efficient adsorption of Pb (II) on graphene oxides: A process combined by batch experiments and modeling techniques. J Mol Liq. 215(2016), 410-416.
Zhang J., Gong J.L., Zenga G.M., Ou X.M., Jiang Y., Chang Y.N., Liu H.Y., 2016. Simultaneous removal of humic acid/fulvic acid and lead from landfill leachate using magnetic graphene oxide. Appl Surf Sci. 370, 335-350.
Madadrang C.J., Kim H.Y., Gao G., Wang N., Zhu J., Feng H., Hou S., 2012. Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Appl Mater Interfaces. 4(3), 1186-1193.
Cui L., Wang Y., Gao L., Hu L., Yan L., Wei Q., Du B., 2015. EDTA functionalized magnetic graphene oxide for removal of Pb (II), Hg (II) and Cu (II) in water treatment: adsorption mechanism and separation property. J Chem Eng. 281, 1-10.
Zhang F., Song Y., Song S., Zhang R., Hou W., 2015. Synthesis of magnetite–graphene oxide-layered double hydroxide composites and applications for the removal of Pb (II) and 2, 4-dichlorophenoxyacetic acid from aqueous solutions. ACS Appl Mater Interfaces. 7(13), 7251-7263.
Kumar S., Nair R.R., Pillai P.B., Gupta S.N., Iyengar M.A.R., Sood A.K., 2014. Graphene oxide–MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl Mater Interfaces. 6(20), 17426-17436.
Wan S., He F., Wu J., Wan W., Gu Y., Gao B., 2016. Rapid and highly selective removal of lead from water using graphene oxide-hydrated manganese oxide nanocomposites. J Hazard Mater. 314, 32-40.
Li X., Wang Z., Li Q., Ma J., Zhu M., 2015. Preparation, characterization, and application of mesoporous silica-grafted graphene oxide for highly selective lead adsorption. J Chem Eng. 273, 630-637.
Zhou G., Liu C., Tang Y., Luo S., Zeng Z., Liu Y., Chu L., 2015. Sponge-like polysiloxane-graphene oxide gel as a highly efficient and renewable adsorbent for lead and cadmium metals removal from wastewater. J Chem Eng. 280, 275-282.
Yang J., Wu J.X., Lu Q.F., Lin T.T., 2014. Facile preparation of lignosulfonate–graphene oxide–polyaniline ternary nanocomposite as an effective adsorbent for Pb (II) ions. ACS Sustain Chem Eng. 2(5), 1203-1211.
Musico Y.L.F., Santos C.M., Dalida M.L.P., Rodrigues D.F., 2013. Improved removal of lead (II) from water using a polymer-based graphene oxide nanocomposite. J Mater Chem A. 1(11), 3789-3796.
Hu L., Yang Z., Cui L., Li Y., Ngo H.H., Wang Y., Du B., 2016. Fabrication of hyperbranched polyamine functionalized graphene for high-efficiency removal of Pb (II) and methylene blue. J Chem Eng. 287, 545-556.
Yang Y., Wang W., Li M., Wang H., Zhao M., Wang C., 2018. Preparation of PANI grafted at the edge of graphene oxide sheets and its adsorption of Pb (II) and methylene blue. Polym Compos. 39(5), 1663-1673.
Fan L., Luo C., Sun M., Li X., Qiu H., 2013. Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids Surf B. 103, 523-529.
Samuel M.S., Shah S.S., Bhattacharya J., Subramaniam K., Singh N.P., 2018. Adsorption of Pb (II) from aqueous solution using a magnetic chitosan/graphene oxide composite and its toxicity studies. Int J Biol Macromol. 115, 1142-1150.
Sheshmani S., Nematzadeh M.A., Shokrollahzadeh S., Ashori A., 2015. Preparation of graphene oxide/chitosan/FeOOH nanocomposite for the removal of Pb (II) from aqueous solution. Int J Biol Macromol. 80, 475-480.
Wang Y., Li L., Luo C., Wang X., Duan H., 2016. Removal of Pb2+ from water environment using a novel magnetic chitosan/graphene oxide imprinted Pb2+. Int. J. Biol. Macromol. 86, 505-511.
Sharma P., Singh A.K., Shahi V.K., 2018. Selective adsorption of Pb (II) from aqueous medium by cross-linked chitosan-functionalized graphene oxide adsorbent. ACS Sustain Chem Eng. 7(1), 1427-1436.
Ma Y.X., Shao W.J., Sun W., Kou Y.L., Li X., Yang H.P., 2018. One-step fabrication of β-cyclodextrin modified magnetic graphene oxide nanohybrids for adsorption of Pb (II), Cu (II) and methylene blue in aqueous solutions. Appl Surf Sci. 459, 544-553.
Pan L., Wang Z., Yang Q., Huang R., 2018. Efficient removal of lead, copper and cadmium ions from water by a porous calcium alginate/graphene oxide composite aerogel. Nanomaterials. 8(11), 957.
Yu Y., Zhang G., Ye L., 2019. Preparation and adsorption mechanism of polyvinyl alcohol/graphene oxide‐sodium alginate nanocomposite hydrogel with high Pb (II) adsorption capacity. J Appl Polym Sci.136(14), 47318.
Jiao C., Xiong J., Tao J., Xu S., Zhang D., Lin H., Chen Y., 2016. Sodium alginate/graphene oxide aerogel with enhanced strength–toughness and its heavy metal adsorption study. Int J Biol Macromol.83, 133-141.
Zhao G., Ren X., Gao X., Tan X., Li J., Chen C., Wang X., 2011. Removal of Pb (II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton transactions. 40(41), 10945-10952.
Sitko R., Janik P., Feist B., Talik E., Gagor A., 2014. Suspended aminosilanized graphene oxide nanosheets for selective preconcentration of lead ions and ultrasensitive determination by electrothermal atomic absorption spectrometry. ACS Appl Mater Interfaces. 6(22), 20144-20153.
Tan M., Liu X., Li W., Li H., 2015. Enhancing sorption capacities for copper (II) and lead (II) under weakly acidic conditions by L-tryptophan-functionalized graphene oxide. J Chem Eng Data. 60(5), 1469-1475.
Luo S., Xu X., Zhou G., Liu C., Tang Y., Liu Y., 2014. Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb (II) from wastewater. J Hazard Mater. 274, 145-155.
Zhang F., Wang B., He S., Man R., 2014. Preparation of graphene-oxide/polyamidoamine dendrimers and their adsorption properties toward some heavy metal ions. J Chem Eng Data. 59(5), 1719-1726.
Lim J.Y., Mubarak N.M., Abdullah E.C., Nizamuddin S., Khalid M., 2018. Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals—A review. J Ind Eng Chem. 66, 29-44.
Liu Y., Xu L., Liu J., Liu X., Chen C., Li G., Meng Y., 2016. Graphene oxides cross-linked with hyperbranched polyethylenimines: Preparation, characterization and their potential as recyclable and highly efficient adsorption materials for lead (II) ions. J Chem Eng. 285, 698-708.
Li X., Zhou H., Wu W., Wei S., Xu Y., Kuang Y., 2015. Studies of heavy metal ion adsorption on Chitosan/Sulfydryl-functionalized graphene oxide composites. J Colloid Interface Sci. 448, 389-397.
Liu L., Li C., Bao C., Jia Q., Xiao P., Liu X., Zhang Q., 2012. Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au (III) and Pd (II). Talanta. 93, 350-357.
Wang Y., Zhao Q., Han N., Bai L., Li J., Liu J., Wang S., 2015. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: NBM. 11(2), 313-327.
Wang Y., Liang S., Chen B., Guo F., Yu S., Tang Y., 2013. Synergistic removal of Pb (II), Cd (II) and humic acid by Fe3O4@ mesoporous silica-graphene oxide composites. PloS One. 8(6), e65634.
Kyzas G.Z., Travlou N.A., Deliyanni E.A., 2014. The role of chitosan as nanofiller of graphite oxide for the removal of toxic mercury ions. Colloids Surf B. 113, 467-476.
Zhou C., Zhu H., Wang Q., Wang J., Cheng J., Guo Y., Bai R., 2017. Adsorption of mercury (II) with a Fe3O4 magnetic polypyrrole–graphene oxide nanocomposite. RSC Adv. 7(30), 18466-18479.
Guo Y., Deng J., Zhu J., Zhou X., Bai R., 2016. Removal of mercury (II) and methylene blue from a wastewater environment with magnetic graphene oxide: adsorption kinetics, isotherms and mechanism. Rsc Adv. 6(86), 82523-82536.
Website: https://tuball.com/articles/single-walled-carbon-nanotubes (Access date: 15/10/2023)
Rauti R., Musto M., Bosi S., Prato M., Ballerini L., 2019. Properties and behavior of carbon nanomaterials when interfacing neuronal cells: How far have we come? Carbon. 143, 430-446.
Obodo R.M., Ahmad I., Ezema F.I. Introductory chapter: graphene and its applications. In Graphene and Its Derivatives-Synthesis and Applications. Intechopen, 2019. pp. 3-11
Joshi M.K., Pant H.R., Liao N., Kim J.H., Kim H.J., Park C.H., Kim C.S., 2015. In-situ deposition of silver− iron oxide nanoparticles on the surface of fly ash for water purification. J Colloid Interface Sci. 453, 159-168.
Joshi M.K., Pant H.R., Kim H.J., Kim J.H., Kim C.S., 2014. One-pot synthesis of Ag-iron oxide/reduced graphene oxide nanocomposite via hydrothermal treatment. Colloids Surf. A: Physicochem Eng. 446, 102-108.
Debnath B., Biswas N.T., Baidya R., Ghosh S.K., 2014. In: Nanotechnology in waste water treatment: a review, Proceedings of IV International Conference on Ecology of Urban Areas, Zrenjanin, Serbia, October 9-10, pp. 562-575.
Wang L., Li J., Jiang Q., Zhao L., 2012. Water-soluble Fe3O4 nanoparticles with high solubility for removal of heavy-metal ions from waste water. Dalton Transactions. 41(15), 4544-4551.
Padungthon S., Chanthapon N., El-Moselhy M.M., Praipipat P., 2017. Trace Lead Removal in Drinking Water Using High Capacity Polymeric Supported Hydrated Iron Oxide Nanoparticles. KEM.718, 72-76.
Barrera L.A., Synthesis of Nanotemplated, Glucose-Derived Adsorbents for the Removal of Organic and Inorganic Pollutants from Water. Ph.D Thesis. The University of Texas: El Paso, August, 2020.
Nasar N.N., 2010. Rapid removal and recovery of Pb (II) from wastewater by magnetic nanoadsorbents. J Hazard Mater. 184(1-3), 538-546.
Mokadem Z., Saïdi-Besbes S., Agusti G., Elaissari A., Derdour A., 2016. Magnetic nanoadsorbents for metal remediation. J Colloid Sci Biotechnol. 5(2), 111-133.
Abd El Fatah M., Ossman M.E., 2014. Removal of heavy metal by nickel oxide nano powder. Int J Environ Res. 8(3), 741-750.
Mahmoud A.M., Ibrahim F.A., Shaban S.A., Youssef N.A., 2015. Adsorption of heavy metal ion from aqueous solution by nickel oxide nano catalyst prepared by different methods. Egypt J Pet. 24(1), 27-35.
Ghani N.A.N.R., Jami M.S., Alam M.Z., 2021. The role of nanoadsorbents and nanocomposite adsorbents in the removal of heavy metals from wastewater: A review and prospect. Pollution. 7(1), 153-179.
Azizi S., Shahri M.M., Mohamad R., 2017. Green synthesis of zinc oxide nanoparticles for enhanced adsorption of lead ions from aqueous solutions: equilibrium, kinetic and thermodynamic studies. Molecules. 22(6), 831.
Taqui M., Das S., Kamilya T., Mondal S., Chaudhuri S., 2022. Green synthesis of iron-oxide nanoparticles using scrap iron as precursor for the removal of Pb (II) from aqueous medium. J Environ Eng Landsc Manag. 30(2), 308-320.
Lin M., Chen Z., 2020. A facile one-step synthesized epsilon-MnO2 nanoflowers for effective removal of lead ions from wastewater. Chemosphere. 250, 126329.
Ashrafi A., Rahbar-Kelishami A., Shayesteh H., 2017. Highly efficient simultaneous ultrasonic assisted adsorption of Pb (II) by Fe3O4@ MnO2 core-shell magnetic nanoparticles: Synthesis and characterization, kinetic, equilibrium, and thermodynamic studies. J Mol Struct. 1147, 40-47.
Shi S., Xu C., Dong Q., Wang Y., Zhu S., Zhang X., Xu D., 2021. High saturation magnetization MnO2/PDA/Fe3O4 fibers for efficient Pb (II) adsorption and rapid magnetic separation. Appl Surf Sci. 541, 148379.
Rajput S., Singh L.P., Pittman Jr. C.U., Mohan D., 2017. Lead (Pb2+) and copper (Cu2+) remediation from water using superparamagnetic maghemite (γ-Fe2O3) nanoparticles synthesized by Flame Spray Pyrolysis (FSP). J Colloid Interface Sci. 492, 176-190.
Zhang D., Gao W., Chang G., Luo S., Jiao W., Liu Y., 2019. Removal of heavy metal lead (II) using nanoscale zero-valent iron with different preservation methods. Adv Powder Technol. 30, 581–589.
Wang X., Huang K., Chen Y., Liu J., Chen S., Cao J., Mei S., Zhou Y., Jing T., 2018. Preparation of dumbbell manganese dioxide/gelatin composites and their application in the removal of lead and cadmium ions. J Hazard Mater. 350, 46–54.
Girginova P.I., Daniel-da-Silva A.L., Lopes C.B., Figueira P., Otero M., Amaral V.S., Trindade T., 2010. Silica coated magnetite particles for magnetic removal of Hg2+ from water. J Colloid Interface Sci.345(2), 234-240.
Liu J.F., Zhao Z.S., Jiang G. B., 2008. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. ES & T. 42(18), 6949-6954.
Vélez E., Campillo G.E., Morales G., Hincapié C., Osorio J., Arnache O., Jaramillo F., 2016, February. Mercury removal in wastewater by iron oxide nanoparticles. JCPS. 687(1), 012050.
Vélez E., Campillo G., Morales G., Hincapié C., Osorio J., Arnache O., 2018. Silver nanoparticles obtained by aqueous or ethanolic aloe Vera extracts: An assessment of the antibacterial activity and mercury removal capability. J Nanomater. 2018(7215210), 1-7.
Pacheco S., Medina M., Valencia F., Tapia J., 2006. Removal of inorganic mercury from polluted water using structured nanoparticles. J Environ Eng. 132(3), 342-349.
Lo S.I., Chen P.C., Huang C.C., Chang H.T., 2012. Gold nanoparticle–aluminum oxide adsorbent for efficient removal of mercury species from natural waters. ES & T.46(5), 2724-2730
Huang X., Yang J., Wang J., Bi J., Xie C., Hao H., 2018. Design and synthesis of core–shell Fe3O4 @PTMT composite magnetic microspheres for adsorption of heavy metals from high salinity wastewater. Chemosphere. 206, 513.
Naushad M., Ahamad T., Al-Maswari B.M., Alqadami A.A., Alshehri S.M., 2017. Nickel ferrite bearing nitrogen-doped mesoporous carbon as efcient adsorbent for the removal of highly toxic metal ion from aqueous medium. Chem Eng J. 330, 1351–1360.
Furukawa H., Cordova K.E., O’Keeffe M., Yaghi O.M., 2013. The chemistry and applications of metal-organic frameworks. Science. 341(6149), 1230444.
Yaghi O.M., O'Keeffe M., Ockwig N.W., Chae H.K., Eddaoudi M., Kim J., 2003. Reticular synthesis and the design of new materials. Nature. 423(6941), 705-714.
Drout R.J., Robison L., Chen Z., Islamoglu T., Farha O.K., 2019. Zirconium metal–organic frameworks for organic pollutant adsorption. Trends Chem.1(3), 304-317.
Zhou H.C., Long J.R., Yaghi O.M., 2012. Introduction to metal–organic frameworks. Chem. Rev.112(2), 673-674.
Burnett B.J., Barron P.M., Choe W., 2012. Recent advances in porphyrinic metal–organic frameworks: materials design, synthetic strategies, and emerging applications. Cryst Eng Comm. 14(11), 3839-3846.
Ni B.J., Huang Q.S., Wang C., Ni T.Y., Sun J., Wei W., 2019. Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge. Chemosphere. 219, 351-357.
Nunez-Gomez D., Rodrigues C., Lapolli F.R., Lobo-Recio M.A., 2019. Adsorption of heavy metals from coal acid mine drainage by shrimp shell waste: Isotherm and continuous-flow studies. J Environ Chem Eng. 7(1), 102787.
Ji C., Ren Y., Yu H., Hua M., Lv L., Zhang W., 2022. Highly efficient and selective Hg (II) removal from water by thiol-functionalized MOF-808: Kinetic and mechanism study. Chem Eng J.430, 132960.
Wang C., Lin G., Xi Y., Li X., Huang Z., Wang S., Zhang L., 2020. Development of mercaptosuccinic anchored MOF through one-step preparation to enhance adsorption capacity and selectivity for Hg (II) and Pb (II). J Mol Liq.317, 113896.
Rathi B.S., Kumar P.S., 2021. Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environ Pollut. 280, 116995.
Lin G., Zeng B., Li J., Wang Z., Wang S., Hu T., Zhang L., 2023. A systematic review of metal organic frameworks materials for heavy metal removal: Synthesis, applications and mechanism. Chem Eng J.460, 141710.
Yin W.H., Xiong Y.Y., Wu H.Q., Tao Y., Yang L.X., Li J.Q., Luo F., 2018. Functionalizing a metal–organic framework by a photoassisted multicomponent postsynthetic modification approach showing highly effective Hg (II) removal. Inorg Chem.57(15), 8722-8725.
Liang L., Liu L., Jiang F., Liu C., Yuan D., Chen Q., Hong M., 2018. Incorporation of In2S3 nanoparticles into a metal–organic framework for ultrafast removal of Hg from water. Inorg Chem.57(9), 4891-4897.
Cheang T., Huang W., Li W., Ren S., Wen H., Zhou T., Lin W., 2022. Exposed carboxyl functionalized MIL-101 derivatives for rapid and efficient extraction of heavy metals from aqueous solution. Colloids Surf. A Physicochem Eng Asp.649, 129517.
Morcos G.S., Ibrahim A.A., El-Sayed M.M., El-Shall M.S., 2021. High performance functionalized UiO metal organic frameworks for the efficient and selective adsorption of Pb (II) ions in concentrated multi-ion systems. J Environ Chem Eng.9(3), 105191.
Ding L., Luo X., Shao P., Yang J., Sun D., 2018. Thiol-functionalized Zr-based metal–organic framework for capture of Hg (II) through a proton exchange reaction. ACS Sustain. Chem Eng.6(7), 8494-8502.
Rivera J.M., Rincón S., Youssef B.C., Zepeda A., 2016. Highly efficient adsorption of aqueous Pb (II) with mesoporous metal-organic framework-5: an equilibrium and kinetic study. J Nanomater.2016.
Chai X., Dong H., Zhang Z., Qi Z., Chen J., Huang Z., Qiu T., 2022. A novel Zr-MOF modified by 4, 6-Diamino-2-mercaptopyrimidine for exceptional Hg (II) removal. JWPE. 46, 102606.
Li Y. H., Wang C. C., Zeng X., Sun X. Z., Zhao C., Fu H., Wang P., 2022. Seignette salt induced defects in Zr-MOFs for boosted Pb (II) adsorption: universal strategy and mechanism insight. Chem Eng J.442, 136276.
Zhong J., Zhou J., Xiao M., Liu J., Shen J., Liu J., Ren S., 2022. Design and syntheses of functionalized copper-based MOFs and its adsorption behavior for Pb (II). Chin Chem Lett.33(2), 973-978.
Huang L., He M., Chen B., Hu B., 2016. A mercapto functionalized magnetic Zr-MOF by solvent-assisted ligand exchange for Hg2+ removal from water. J Mater Chem A. 4(14), 5159-5166.
Abdollahi N., Razavi A.S.A., Morsali A. Hu M.L., 2020. High capacity Hg (II) and Pb (II) removal using MOF-based nanocomposite: Cooperative effects of pore functionalization and surface-charge modulation. J Hazard Mater. 387, 121667.
Huang L., He M., Chen B., Hu B., 2015. A designable magnetic MOF composite and facile coordination-based post-synthetic strategy for the enhanced removal of Hg2+ from water. J Mater Chem A. 3(21), 11587-11595.
Ke F., Jiang J., Li Y., Liang J., Wan X., Ko S., 2017. Highly selective removal of Hg2+ and Pb2+ by thiol-functionalized Fe3O4@ metal-organic framework core-shell magnetic microspheres. Appl Surf Sci.413, 266-274.
Chen J., Liu K., Jiang M., Han J., Liu M., Wang C., Li C., 2019. Controllable preparation of porous hollow carbon sphere@ ZIF-8: Novel core-shell nanomaterial for Pb2+ adsorption. Colloids Surf. A Physicochem. Eng Asp.568, 461-469.
Wang J., Li Y., Lv Z., Xie Y., Shu J., Alsaedi A., Chen C., 2019. Exploration of the adsorption performance and mechanism of zeolitic imidazolate framework-8@ graphene oxide for Pb (II) and 1-naphthylamine from aqueous solution. J Colloid Interface Sci.542, 410-420.
Gu Y., Wang Y., Li H., Qin W., Zhang H., Wang G., Zhao H., 2020. Fabrication of hierarchically porous NH2-MIL-53/wood-carbon hybrid membrane for highly effective and selective sequestration of Pb2+. Chem Eng J.387, 124141.
Jamshidifard S., Koushkbaghi S., Hosseini S., Rezaei S., Karamipour A., Irani M., 2019. Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb (II), Cd (II) and Cr (VI) ions from aqueous solutions. J Hazard Mater.368, 10-20.
Metwally M.G., Benhawy A.H., Khalifa R.M., El Nashar R.M., Trojanowicz M., 2021. Application of molecularly imprinted polymers in the analysis of waters and wastewaters. Molecules. 26(21), 6515.
Tchekwagep P.M.S., Crapnell R.D., Banks C.E., Betlem K., Rinner U., Canfarotta F., McClements J., 2022. A critical review on the use of molecular imprinting for trace heavy metal and micropollutant detection. Chemosensors. 10(8), 296.
Sarpong K.A., Xu W., Huang W., Yang W., 2019. The development of molecularly imprinted polymers in the clean-up of water pollutants: a review. Am J Anal Chem.10(5), 202-226.
Erdem Ö., Saylan Y., Andaç M., Denizli A., 2018. Molecularly imprinted polymers for removal of metal ions: An alternative treatment method. Biomimetics. 3(4), 38.
Edianta J., Satya O.C., Saleh K., Virgo F., Monado F., Royani I., 2023. Review of Ion Imprinted Polymers Nanofiber with Technology Electrospinning: An Advanced Materials for Removal of Heavy Metal Ions. J Chem Technol Metall. 58(4), 731-748.
Fu J., Wang X., Li J., Ding Y., Chen L., 2016. Synthesis of multi-ion imprinted polymers based on dithizone chelation for simultaneous removal of Hg2+, Cd2+, Ni2+ and Cu2+ from aqueous solutions. RSC Adv.6(50), 44087-44095.
Jiang W., Jin X., Yu X., Wu W., Xu L., Fu F., 2017. Ion-imprinted magnetic nanoparticles for specific separation and concentration of ultra-trace methyl mercury from aqueous sample. J Chromatogr A. 1496, 167-173.
Zhang Q., Wu J., Luo X., 2016. Facile preparation of a novel Hg (II)-ion-imprinted polymer based on magnetic hybrids for rapid and highly selective removal of Hg (II) from aqueous solutions. RSC Adv.6(18), 14916-14926.
Soleimani M., Afshar M.G., 2015. Highly selective solid phase extraction of mercury ion based on novel ion imprinted polymer and its application to water and fish samples. J Anal Chem.70, 5-12.
Basir D.N., Zulfikar M.A., Amran M.B., 2020. The synthesis of imprinted polymer sorbent for the removal of mercury ions. SJST. 42(5), 1135-1141.
Yze L.H., Yusof N.A., Maamor N.A.M., Azeman N.H., 2014. Fabrication and characterization of molecularly imprinted polymer for Hg (II) ion. Asian J Chem.26(16), 5029.
Liu Y., Chang X., Yang D., Guo Y., Meng S., 2005. Highly selective determination of inorganic mercury (II) after preconcentration with Hg (II)-imprinted diazoaminobenzene–vinylpyridine copolymers. Anal Chim Acta.538(1-2), 85-91.
Zhu C., Hu T., Tang L., Zeng G., Deng Y., Lu Y., Yu J., 2018. Highly efficient extraction of lead ions from smelting wastewater, slag and contaminated soil by two-dimensional montmorillonite-based surface ion imprinted polymer absorbent. Chemosphere. 209, 246-257.
Zhang Z., Zhang X., Niu D., Li Y., Shi J., 2017. Highly efficient and selective removal of trace lead from aqueous solutions by hollow mesoporous silica loaded with molecularly imprinted polymers. J Hazard Mater.328, 160-169.
Ebrahimzadeh H., Behbahani M., 2017. A novel lead imprinted polymer as the selective solid phase for extraction and trace detection of lead ions by flame atomic absorption spectrophotometry: synthesis, characterization and analytical application. Arab J Chem.10, S2499-S2508.
Behbahani M., Hassanlou P.G., Amini M.M., Moazami H.R., Abandansari H.S., Bagheri A., Zadeh S.H., 2015. Selective solid-phase extraction and trace monitoring of lead ions in food and water samples using new lead-imprinted polymer nanoparticles. Food Anal Methods. 8, 558-568.
Huang K., Li B., Zhou F., Mei S., Zhou Y., Jing T., 2016. Selective solid-phase extraction of lead ions in water samples using three-dimensional ion-imprinted polymers. Anal Chem.88(13), 6820-6826.
Khajeh M., Heidari Z.S., Sanchooli E., 2011. Synthesis, characterization and removal of lead from water samples using lead-ion imprinted polymer. Chem Eng J.166(3), 1158-1163.
Chunxiang L.I., Jie G.A.O., Jianming P.A.N., Zhang Z., Yongsheng Y., 2009. Synthesis, characterization, and adsorption performance of Pb (II)-imprinted polymer in nano-TiO2 matrix. J Environ Sci.21(12), 1722-1729.
Zhu L., Zhu Z., Zhang R., Hong J., Qiu Y., 2011. Synthesis and adsorption performance of lead ion-imprinted micro-beads with combination of two functional monomers. J Environ Sci.23(12), 1955-1961.
Khajeh M., Sanchooli E., 2011. Synthesis of ion-selective imprinted polymer for manganese removal from environmental water. Polym Bull.67, 413-425.
Zhang M., Zhang Z., Liu Y., Yang X., Luo L., Chen J., Yao S., 2011. Preparation of core–shell magnetic ion-imprinted polymer for selective extraction of Pb (II) from environmental samples. Chem Eng J.178, 443-450.
Esen C., Andac M., Bereli N., Say R., Henden E., Denizli A., 2009. Highly selective ion-imprinted particles for solid-phase extraction of Pb2+ ions. Mater Sci Eng C.29(8), 2464-2470.
Luo X., Liu L., Deng F., Luo S., 2013. Novel ion-imprinted polymer using crown ether as a functional monomer for selective removal of Pb (II) ions in real environmental water samples. J Mater Chem A. 1(28), 8280-8286.
Tarley C.R.T., Andrade F.N., De Santana H., Zaia D.A.M., Beijo L.A., Segatelli M.G., 2012. Ion-imprinted polyvinylimidazole-silica hybrid copolymer for selective extraction of Pb (II): Characterization and metal adsorption kinetic and thermodynamic studies. React Funct Polym.72(1), 83-91.
Singh D.K., Mishra S., 2010. Synthesis and characterization of Hg (II)-ion-imprinted polymer: kinetic and isotherm studies. Desalination. 257(1-3), 177-183.
Firouzzare M., Wang Q., 2012. Synthesis and characterization of a high selective mercury (II)-imprinted polymer using novel aminothiol monomer. Talanta. 101, 261-266.
Dakova I., Karadjova I., Georgieva V., Georgiev G., 2009. Ion-imprinted polymethacrylic microbeads as new sorbent for preconcentration and speciation of mercury. Talanta. 78(2), 523-529.
255. Wang Z., Wu G., He, C., 2009. Ion-imprinted thiol-functionalized silica gel sorbent for selective separation of mercury ions. Mikrochim Acta.