Oxidative Stress Responses and Toxicity of Green Synthesized Silver Nanoparticles (AgNPs) on Basil (Ocimum basilicum) Seedlings
محورهای موضوعی :
Ali Zareii
1
,
Hossein Abbaspour
2
,
Maryam Peyvandi
3
,
Ahmad Majd
4
1 - Department of Biology, Faculty of Basic Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
2 - Department of Biology, Faculty of Basic Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
3 - Department of Biology, Faculty of Basic Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
4 - Department of Biology, Faculty of Basic Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
تاریخ دریافت : 1401/11/05
تاریخ پذیرش : 1402/01/20
تاریخ انتشار : 1402/01/26
کلید واژه:
antioxidant enzyme,
basil,
Oxidative stress,
ROS,
AgNPs,
چکیده مقاله :
This study aimed at investigating how treatment of basil seedlings with green synthesized AgNPs affects their Ag content, oxidative damage and antioxidant enzymes activity. This research was studied as a completely randomized design in four replications. Four levels of silver nanoparticles (0, 4, 10 and 40 mg L-1) were used. After germination, the seedlings were treated for 7 days and then seedlings were harvested for analysis. Findings showed that AgNP treatment increased Ag content O2•−, H2O2, MDA, and ion leakage in basil seedlings. The use of AgNPs caused a significant increase in the activities of SOD, APX, CAT, and GR enzymes in plants. However, at high levels (40 mg L-1) of AgNPs, enzymes activity decreased significantly. These findings suggest that the application of green synthesized AgNPs to basil seedlings led to oxidative stress. Moreover, the observed changes in radical scavenging enzyme activity indicate that synthetic green nanoparticles have a harmful effect on basil seedlings. This toxicity is more pronounced at higher concentrations.
منابع و مأخذ:
Rani N., Singla R.K., Redhu R., Narwal S., Sonia, and Bhatt A., 2022. A Review on Green Synthesis of Silver Nanoparticles and its Role against Cancer. Curr Top Med Chem. 22(18), 1460-1471.
Simon S., Sibuyi N.R.S., Fadaka A.O., Meyer S., Josephs J., Onani M.O., Madiehe A.M., 2022. Biomedical Applications of Plant Extract - Synthesized Silver Nanoparticles. Biomedicines. 10(11), 2792; https://doi.org/10.3390/biomedicines10112792
Alabdallah N.M., Hasan M.M., 2021. Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants. Saudi J Biol Sci. 28(10), 5631-5639.
Vanlalveni C., Lallianrawna S., Biswas A., Selvaraj M., Changmai B., and Rokhum S.L., 2021. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Adv. 11(5), 2804-2837.
Castillo-Henríquez L., Alfaro-Aguilar K., Ugalde-Álvarez J., Vega-Fernández L., Montes de Oca-Vásquez G., Vega-Baudrit J.R., 2020. Green Synthesis of Gold and Silver Nanoparticles from Plant Extracts and Their Possible Applications as Antimicrobial Agents in the Agricultural Area. Nanomaterials (Basel). 10(9), 1763. doi: 10.3390/nano10091763
Ahmed S., Ahmad M., Swami B.L., Ikram S., 2016. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res. 7(1), 17-28.
Vijayaraghavan K., Nalini S.P., 2010. Biotemplates in the green synthesis of silver nanoparticles. Biotechnol J. 5(10), 1098-110.
Tariq M., Mohammad K.N., Ahmed B., Siddiqui M.A., Lee J., 2022. Biological Synthesis of Silver Nanoparticles and Prospects in Plant Disease Management. Molecules. 27(15), 4754; https://doi.org/10.3390/molecules27154754
Parashar S., Sharma M.K., Garg C., Garg M., 2022. Green Synthesized Silver Nanoparticles as Silver Lining in Antimicrobial Resistance: A Review Curr Drug Deliv. 19(2), 170-181.
Hasan K.M.F., Xiaoyi L., Shaoqin Z., Horváth P.G., Bak M., Bejó L., Alpár T., 2022. Functional silver nanoparticles synthesis from sustainable point of view: 2000 to 2023 ‒ A review on game changing materials. Heliyon. 8(12), e12322.
Ahmed O., Sibuyi N.R.S., Fadaka A.O., Madiehe M.A., Maboza E., Meyer M., Geerts G., 2022. Plant Extract-Synthesized Silver Nanoparticles for Application in Dental Therapy. Pharmaceutics. 14(2). 380; https://doi.org/10.3390/pharmaceutics14020380
Huq M.A., Ashrafudoulla M., Rahman M.M., Balusamy S.R., Akter S., 2022. Green Synthesis and Potential Antibacterial Applications of Bioactive Silver Nanoparticles: A Review. Polymers (Basel). 14(4), 742. https://doi.org/10.3390/polym14040742
Siddiqi K.S., Husen A., 2022. Plant response to silver nanoparticles: a critical review. Crit Rev Biotechnol. 42(7), 973-990.
Mathur P., Jha S., Ramteke S., Jain N.K., 2018. Pharmaceutical aspects of silver nanoparticles. Artif. Cells Nanomed. Biotechnol. 46(sup1), 115-126.
Hembram K.C., Kumar R., Kandha L., Parhi P.K., Kundu C.N., Bindhani B.K., 2018. Therapeutic prospective of plant-induced silver nanoparticles: application as antimicrobial and anticancer agent. Artif. Cells Nanomed. Biotechnol. 46(sup3), S38-s51.
Yan A., Chen Z., 2019. Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism. Int J Mol Sci. 20(5):1003. doi: 10.3390/ijms20051003.
Mehmood A., 2018. Brief overview of the application of silver nanoparticles to improve growth of crop plants. IET Nanobiotechnol. 12(6), 701-705.
Javed B., Ikram M., Farooq F., Sultana T., Mashwani Z.U., Raja N.I., 2021. Biogenesis of silver nanoparticles to treat cancer, diabetes, and microbial infections: a mechanistic overview. Appl Microbiol Biotechnol. 105(6), 2261-2275.
Sun J., Wang L., Li S., Yin L., Huang J., Chen C., 2017. Toxicity of silver nanoparticles to Arabidopsis: Inhibition of root gravitropism by interfering with auxin pathway. Environ Toxicol Chem. 36(10), 2773-2780.
Souza I.R., Silva L.R., Fernandes L.S.P., Salgado L.D., Silva de Assis H.C., Firak D.S., Leme D.M., 2020. Visible-light reduced silver nanoparticles' toxicity in Allium cepa test system. Environ Pollut. 257, 113551.
Khoshnamvand M., Hao Z., Fadare O.O., Hanachi P., Chen Y., and Liu J., 2020. Toxicity of biosynthesized silver nanoparticles to aquatic organisms of different trophic levels. Chemosphere. 258, 127346.
Jiang H.S., Li M., Chang F.Y., Li W., Yin L.Y., 2012. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ Toxicol Chem. 31(8), 1880-6.
Al-Khattaf F.S., 2021. Gold and silver nanoparticles: Green synthesis, microbes, mechanism, factors, plant disease management and environmental risks. Saudi J Biol Sci. 28(6), 3624-3631.
Saha N., Dutta Gupta S., 2017. Low-dose toxicity of biogenic silver nanoparticles fabricated by Swertia chirata on root tips and flower buds of Allium cepa. J Hazard Mater. 330, 18-28.
Qian H., Peng X., Han X., Ren J., Sun L., Fu Z., 2013. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci. (China). 25(9), 1947-55.
Chen F., Aqeel M., Maqsood M.F., Khalid N., Irshad M.K., Ibrahim M., Lam S.S., 2022. Mitigation of lead toxicity in Vigna radiata genotypes by silver nanoparticles. Environ Pollut. 308, 119606.
Tortella G.R., Rubilar O., Durán N., Diez M.C., Martínez M., Parada J., Seabra A.B., 2020. Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment. J Hazard Mater. 390, 121974.
Desai A.S., Singh A., Edis Z., Haj Bloukh S., Shah P., Pandey B., Bhagat N., 2022. An In Vitro and In Vivo Study of the Efficacy and Toxicity of Plant-Extract-Derived Silver Nanoparticles. J Funct Biomater. 13(2).
Rheder D.T., Guilger M., Bilesky-José N., Germano-Costa T., Pasquoto-Stigliani T., Gallep T.B.B., Lima R., 2018. Synthesis of biogenic silver nanoparticles using Althaea officinalis as reducing agent: evaluation of toxicity and ecotoxicity. Sci Rep. 8(1), 12397.
Evelin H., Giri B., Kapoor R., 2012. Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza. 22(3), 203-217.
Mohammadi F., Kavousi H.R., Mansouri M., 2019. Effects of salt stress on physio-biochemical characters and gene expressions in halophyte grass Leptochloa fusca (L.) Kunth. Acta Physiol Plant. 41(8), 1-10.
Cao J., Wang C., Dou Z., Liu M., and Ji D., 2018. Hyphospheric impacts of earthworms and arbuscular mycorrhizal fungus on soil bacterial community to promote oxytetracycline degradation. J Hazard Material. 341, 346-354.
Jia-Dong H., Tao D., Hui-Hui W., Ying-Ning Z., Qiang-Sheng W., Kamil K., 2019. Mycorrhizas induce diverse responses of root TIP aquaporin gene expression to drought stress in trifoliate orange. Sci Horti. 243, 64-69.
Nakano Y., Asada K., 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22(5), 867-880.
Wu J., Shu S., Li C., Sun J., Guo S., 2018. Spermidine-mediated hydrogen peroxide signaling enhances the antioxidant capacity of salt-stressed cucumber roots. Plant Physiol Biochem. 128, 152-162.
Carlberg I., Mannervik B., Glutathione reductase, in Methods in enzymology. 1985, Elsevier. p. 484-490.
Bagherzadeh Homaee M., Ehsanpour A.A., 2016. Silver nanoparticles and silver ions: Oxidative stress responses and toxicity in potato (Solanum tuberosum L.) grown in vitro. Horti Environ Biotech. 57(6), 544-553.
Vinković T., Novák O., Strnad M., Goessler W., Jurašin D.D., Parađiković N., Vrček I.V., 2017. Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. Environ Res. 156, 10-18.
Cvjetko P., Milošić A., Domijan A.M., Vrček I.V., Tolić S., Štefanić P.P., Balen B., 2017. Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol Environ Safety. 137, 18-28.
Mazumdar H. Ahmed G., 2011. Phytotoxicity effect of silver nanoparticles on Oryza sativa. Int J Chem Tech Res. 3(3), 1494-1500.
Mazumdar H., 2014. Comparative assessment of the adverse effect of silver nanoparticles to Vigna radiata and Brassica campestris crop plants. Int J Eng Res Appl. 4, 118-124.
Geisler-Lee J., Wang Q., Yao Y., Zhang W., Geisler M., Li K., Ma X., 2012. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology. 7(3), 323-337.
Mustapha T., Misni N., Ithnin N.R., Daskum A.M., Unyah N.Z., 2022. A Review on Plants and Microorganisms Mediated Synthesis of Silver Nanoparticles, Role of Plants Metabolites and Applications. Int J Environ Res. Public Health. 19(2), 674. doi: 10.3390/ijerph19020674.
Majeed M., Hakeem K.R., Rehman R.U., 2022. Synergistic effect of plant extract coupled silver nanoparticles in various therapeutic applications- present insights and bottlenecks. Chemosphere. 288(Pt 2), 132527.
Abasi F., Raja N.I., Mashwani Z.U.R., Amjad M.S., Ehsan M., Mustafa N., Proćków J., 2022. Biogenic Silver Nanoparticles as a Stress Alleviator in Plants: A Mechanistic Overview. Molecules. 27(11), 3378; https://doi.org/10.3390/molecules27113378