Cellular Toxicity of Multi-walled Carbon Nanotubes on Human Lung Cells
محورهای موضوعی :Nafiseh Nasirzadeh 1 , Yahya Rasoulzadeh 2 , Mansour Rezazadeh Azari 3 , Yousef Mohammadian 4
1 - Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
2 - Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
3 - School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
4 - Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
کلید واژه: Carbon nanotubes, Cytotoxicity, IC50, NOAEC, A549 cells,
چکیده مقاله :
Nowadays, multi-walled carbon nanotubes (MWCNTs) are used in various industries. Considering the exposure probability of these nanomaterials to humans, the purpose of the present study is to assess the effect of MWCNTs on cellular toxicity of human alveolar epithelial. The A549 cells were cultured and treated to various doses of MWCNTs at three different times. Finally, the Tetrazolium colorimetric (MTT) assay was implemented for evaluating the cellular viability. The results indicated that the cytotoxicity for MWCNTs on the human alveolar epithelial cells is related to dose and time of exposure. The inhibitory concentration of 50% (IC50) and non-observed adverse effect concentration (NOAEC) are calculated to be 103.6 as well as 0.65μg/mL, respectively. The findings of this present study could contribute to a better understanding of MWCNTs substances and might be useful as a basis for the future risk evaluation studies of exposed population in industries.
1. Suh W.H., Suslick K.S., Stucky G.D., Suh Y.H., 2009. Nanotechnology, nanotoxicology, and neuroscience. Progress in Neurobiology. 87(3), 133–170.
2. Jia P.P., Sun T., Junaid M., Yang L., Ma Y.B., Cui Z.S., Wei D.P., Shi H.F., Pei D.S., 2019. Nanotoxicity of different sizes of graphene (G) and graphene oxide (GO) in vitro and in vivo. Environmental Pollution. 1(247), 595-606.
3. Raymond F., Hamilton J.R., Zheqiong W., Somenath M., Holian A., 2018. The Effects of Varying Degree of MWCNT Carboxylation on Bioactivity in Various In Vivo and In Vitro Exposure Models. Int J Mol Sci. 19(2), 354-360.
4. Oberbek P., Kozikowski P., Czarnecka K., Sobiech P., Jakubiak S., Jankowski T., 2019. Inhalation exposure to various nanoparticles in work environment—contextual information and results of measurements. J Nanopart Res. 21(11), 222-246.
5. Canua I., Bateson T.F., Bouvard V., Debiad M., Diond C., Savolainen K., Yug I.J., 2016. Human exposure to carbon-based fibrous nanomaterials: A review. Int J Hyg Environ Health. 219(2), 166–175.
6. Harper S., Wohlleben W., Doa M., Nowack B., Clancy S., Canady R., Maynard A., 2015. Measuring Nanomaterial Release from Carbon Nanotube Composites: Review of the State of the Science. Journal of Physics: Conference Series. 617 (1), 012026.
7. Omidi M., Alaie S., Rousta A., 2012. Analysis of the vibrational behavior of the composite cylinders reinforced with non-uniform distributed carbon nanotubes using micro-mechanical approach. Meccanica. 47(4), 817–833.
8. Arjmand M., Omidi M., Choolai M.M., 2015. The Effects of Functionalized Multi-walled Carbon Nanotube on Mechanical Properties of Multi-walled Carbon Nanotube/Epoxy Composites. Orient J Chem. 31(4), 2291-2301.
9. Ellenbecker M., Tsai S.J., Jacobs M., Riediker M., Peters T., Liou S., Avila A., FossHansen S., 2018. The difficulties in establishing an occupational exposure limit for carbon nanotubes. J Nanopart Res. 20(5), 131-137.
10. Kuijpers E., Pronk A., Kleemann R., Vlaanderen J., Lan Q., Rothman N., Silverman D., Hoet P., Godderis L., Vermeulen R., 2018. Cardiovascular effects among workers exposed to multiwalled carbon nanotubes. Workplace. 75(5), 351-358.
11. Sahoo N.G., Rana S., Cho J.W., Li L., Hwa S., 2010. Chan Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci. 35(7), 837–867.
12. Kanagaraj S., Varanda R.F., Zhil’tsova V.T., Oliveira A.S.M.,2007. Mechanical properties of high density polyethylene/ carbon nanotube composites. Compos Sci Technol. 67 (15-16), 3071-3078.
13. Geiser M., Kreyling W.G., 2010. Deposition and biokinetics of inhaled nanoparticles. Particle and Fiber Toxicology. 7(1), 1-17.
14. Kennedy I.M., Wilson D., Baraka A., 2009. Uptake and inflammatory effects of nanoparticles in a human vascular endothelial cell line. Research Report (Health Effects Institute). (136), 3-32.
15. Ma-Hock L., Treumann S., Strauss V., Brill S., Luizi F., Mertler M., Wiench K., Gamer A.O., Ravenzwaay B.V., Landsiedel R., 2009. Inhalation Toxicity of Multiwall Carbon Nanotubes in Rats Exposed for 3 Months. Toxicological Sciences. 112 (1-2), 468-481.
16. Mercer R.R., Scabilloni J.F., Hubbs A.F., Battelli L.A., McKinney W., Friend S., Wolfarth M.G., Andrew M., Castranova V., Porter D.W., 2013. Distribution and Fibrotic Response Following Inhalation Exposure to Multi-Walled Carbon Nanotubes. Particle and Fiber Toxicology. 10(1), 33-46.
17. Park E., Cho W., Jeong J., Yi J., Choi K., Park K., 2009. Pro-inflammatory and potential allergic responses resulting from B cell activation in mice treated with multi-walled carbon nanotubes by intratracheal instillation. Toxicology. 259(2), 113–121.
18. Lam C.H., James J.T., McCluskey R., ArepallI S., Hunter R., 2008. A Review of Carbon Nanotube Toxicity and Assessment of Potential Occupational and Environmental Health Risks. Crit Rev Toxicol. 36(3), 189-217
19. Zhang T., Tang M., Zhang S.H., Hu Y., Li H., Zhang T., Xue Y., Pu Y., 2017. Systemic and immunotoxicity of pristine and PEGylated multi-walled carbon nanotubes in an intravenous 28 days repeated dose toxicity study. Int J Nanomed. 12, 1539–1554.
20. Girardello R., Baranzini N., Tettamanti G., Eguileor M., Grimaldi A., 2017. Cellular responses induced by multi-walled carbon nanotubes: in vivo and in vitro studies on the medicinal leech macrophages. Scientific reports. 7(1), 8871-8883.
21. Wang J., Sun R.H., Zhang N., 2009. Multi-walled carbon nanotubes do not impair immune functions of dendritic cells. Carbon. 47(7), 1752–1760.
22. Mohammadiana Y., Shahtaherib S.J., Yaraghic A.A.S., Kakooeib H., Hajaghazadeha M., 2013. Cytotoxicity of single-walled carbon nanotubes, multi-walled carbon nanotubes, and chrysotile to human lung epithelial cells. Toxicol Environ Chem. 95(6), 1037-47.
23. Iran Nano Safety Network, 2016. Research priority in the country. http://nanosafety.ir//fa/event.
24. National Institute for Occupational Safety and Health, 2013. Current Intelligence Bulletin 65: Occupational Exposure to Carbon Nanotubes and Nanofibers. https://www.cdc.gov/niosh/docs/2013-145/default.html.
25. Mihalache R., Verbeek J., Graczyk H., Murashov V., Broekhuizen P.V., 2016. Occupational exposure limits for manufactured nanomaterials, a systematic review. Nanotoxicology. 11(1), 7-19.
26. Jensen K.A., Kembouche Y., Christiansen E., Jacobsen N.R., Wallin H. 2011. Final protocol for producing suitable manufactured nanomaterial exposure media. Nongenotoxic Deliverable Report. 9-27.
27. Bahuguna A., Khan I., Bajpai V., Kang S.C., 2017. MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh Journal of Pharmacology. 12(2), 115-118.
28. International Organization for Standardization, 2010.Nanotechnologies- Occupational risk management applied to engineered nanomaterials- Part 1: Principles and approaches. Switzerland.
29. Mohammadian Y., Rezazadeh Azari M., Peirovi H., Khodagholi F., Pourahmad J., Omidi M., Mehrabi Y., Rafieepour A., 2018. Combined toxicity of multi-walled carbon nanotubes and benzo [a] pyrene in human epithelial lung cells. Toxin Reviews. 1(1), 11-20.
30. Finney D., Stevens W.L., 1948. A table for the calculation of working probits and weights in probit analysis. Biometrika. 35(1-2), 191-201.
31. Nasirzadeh N., Azari M.R., Rasoulzadeh Y., Mohammadian Y., 2019. An assessment of the cytotoxic effects of graphene nanoparticles on the epithelial cells of the human lung. Toxicol Ind Health. 35(1), 79-87.
32. Azari M.R., Mohammadian Y., Pourahmad J., Khodagholi F., Peirovi H., Mehrabi Y., Omidi M., Rafieepour A., 2019. Individual and combined toxicity of carboxylic acid functionalized multi-walled carbon nanotubes and benzo a pyrene in lung adenocarcinoma cells. Environ Sci Pollut Res. 26(13), 12709-12719.
33. Jang M.H., Hwang Y.S., 2018. Effects of functionalized multi-walled carbon nanotubes on toxicity and bioaccumulation of lead in Daphnia magna. PLOS One. 13(3), e0194935.
34. Sweeney S., Hu S., Ruenraroengsak P., Chen S., Gow A., Schwander S., Zhang J.J., Chung K.F., Ryan M.P., Porter A.E., 2016. Carboxylation of multiwalled carbon nanotubes reduces their toxicity in primary human alveolar macrophages. Environmental science: Nano. 3(6), 1340-1350.
35. Yan L., Zhao F., Li S., Hu Z., Zhao Y., 2011. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale. 3(2), 362-382.
36. Chatterjee N., Yang J., Kim H.M., Jo E., Kim P.J., Choi K., Choi J., 2014. Potential toxicity of differential functionalized multiwalled carbon nanotubes (MWCNT) in human cell line (BEAS2B) and Caenorhabditis elegans. J Toxicol Environ Health, Part A. 77 (22-24), 1399−1408.
37. Wang X., Xia T., Ntim S., Ji Z., Lin S., Meng H., Chung C.H., George S., Zhang H., Wang M., Li N., Yang Y., Castranova V., Mitra S., 2011. Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung. American Chemical Society. 5(12), 9772–9787.
38. Stone V., Johnston H., FSchins R.P., 2009. Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol. 36(7), 613–626.
39. Jie D., Qiang M., 2015. Advances in mechanisms and signaling pathways of carbon nanotube toxicity. Nanotoxicology. 9(5), 658–676.
40. Fanizza C., Casciardi S., Incoronato F., Cavallo D., Ursini C.L., Ciervo A., Maiello R., Fresegna A.M., Marcelloni A.M., Lega D., Alvino A., Baiguera S., 2015. Human epithelial cells exposed to functionalized multiwalled carbon nanotubes: interactions and cell surface modifications. Microscopy. 259(3), 173-84.
41. Pauluhn J., 2014. The metrics of MWCNT-induced pulmonary inflammation are dependent on the selected testing regimen. Regul Toxicol Pharmacol. 63(3), 343-52.
42. Kavosi A., Noei S.H.G., Madani S., Khalighfard S., Khodayari S., Khodayari H., Mirzaei M., Kalhori M. R., Yavarian M., Alizadeh A. M., 2018. The toxicity and therapeutic effects of single-and multi-wall carbon nanotubes on mice breast cancer. Scientific Reports. 8(1), 8375.
43. Zhoua L., Formana H. J., Geb Y., Lunecc J., 2017. Multi-walled carbon nanotubes: A cytotoxicity study in relation to functionalization, dose and dispersion. Toxicology In Vitro. 47, 292–298.
44. Sanand S., Kumar S., Bara N., Kaul G., 2018. Comparative evaluation of half-maximum inhibitory concentration and cytotoxicity of silver nanoparticles and multiwalled carbon nanotubes using buffalo bull spermatozoa as a cell model. Toxicol Ind Health. 34(9), 1-13.
45. Pantarotto D., Singh R., McCarthy D., Erhardt M., Briand J.P., Prato M., Kostarelos K., Bianco A., 2004. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed. 43(39), 5242-6.
46. Xu H., Bai J., Meng J., Hao W., Xu H., Min-Cao J., 2009. Multi-walled carbon nanotubes suppress potassium channel activities in PC12 cells. Nanotechnology. 20(28), 285102.
47. Bang J., Yeyeodu Y.S., Gilyazova N., Witherspoon S., Ibeanu G., 2011. Effects of Carbon Nanotubes on a Neuronal Cell Model In Vitro. Atlas Journal of Biology. 1(3), 70-77.