تجزیه دای آلل عملکرد و برخی صفات مورفولوژیکی لوبیا (Phaseolus vulgaris L.) در شرایط آبیاری کامل و تنش کم آبی به روش گریفینگ
محورهای موضوعی : یافته های نوین کشاورزی
1 - دانشگاه آزاد اسلامی، واحد اراک، گروه زراعت و اصلاح نباتات، اراک، ایران
کلید واژه: تنش کم آبی, لوبیا (Phaseolus vulgaris L.), دای آلل, شرایط کامل,
چکیده مقاله :
به منظور بررسی تجزیهدای آلل عملکرد وبرخیصفاتمورفولوژیکیلوبیادر شرایط آبیاری کامل و تنش کم آبی، تحقیقی با 6 لاین لوبیای قرمز و تمامی تلاقی های مربوط به آن، در قالب طرح بلوک های کامل تصادفی در 3 تکرار در دو محیط تنش و بدون تنش در مزارع تحقیقاتی دانشگاه آزاد اسلامی واحد اراک، مورد ارزیابی قرار گرفتند. این آزمایش مشتمل بر 21 ژنوتیپ بود که 6 ژنوتیپ مربوط به والدین و مابقی نسل F2 تلاقیهای مربوط به آنها بود. نتایج نشان داد با توجه به اینکه قابلیت ترکیب پذیری عمومی برای بسیاری از صفات در هر دو شرایط معنی دار میباشد نقش اثرات افزایشی ژنها در کنترل این صفات بسیار حائز اهمیت است. قابلیت ترکیب پذیری خصوصی نیز در تعدادی از صفات معنیدار میباشد که نشان دهنده نقش اثرات غیر افزایشی بوده است. معنی دار بودن نسبت GCA/SCAدر صفات نشان می دهد در این صفات اثرات افزایشی ژنها نسبت به اثرات غیر افزایشی از اهمیت بالاتری برخوردار میباشند. در شرایط تنش صفت عملکرد تحت کنترل اثرات افزایشی و غیر افزایشی میباشد. در هر دو شرایط، واریانس غیر افزایشی از اهمّیت بالاتری در کنترل این صفت عملکرد برخوردار میباشد. بیشترین میزان ترکیبپذیری عمومی صفت عملکرد در شرایط غیر تنش، مربوط به ژنوتیپ صیاد و کمترین آن مربوط به ژنوتیپ اختر بود؛ در شرایط تنش خشکی والد Ks31169بالاترین ترکیب پذیری عمومی معنی دار را برای صفت عملکرد از خود نشان داده است. در شرایط غیر تنش، تلاقی×AND1007اختر و در شرایط تنش خشکی، تلاقی های اخترKs31169×و ×D81083گلیبالاترین ترکیب پذیری خصوصی را برای عملکرد دارند.
Common bean (Phaseolus vulgaris L.) is the most important grain legume for human consumption, and water stress affects over 60 % of dry bean production worldwide. In order to diallel analysis evaluation of bean grain yield and Some morphological traits under normal and water stress by Griffing method, an experiment was conducted on six genotypes of red, in a randomized complete block design with three replications under stress and non-stress at the Arak Islamic Azad University. The experiment consisted of 21 genotypes that six genotypes of parents and the rest of the F2 generation crosses on them. The results showed that, given that general combining abilities (GCA) was significant for most traits in both conditions, the additive gene effects in controlling these traits is very important. The specific combining ability (SCA) was significant in a number of traits that have been the role of non-additive effects. Significance of the GCA / SCA traits indicates that these traits additive gene effects were more important than non-additive effects. Yield controlled by additive and non-additive effects under water stress conditions. In both conditions, non-additive variance (dominance effect) is more important to control of yield trait. GCA highest in yield trait was related to genotype Sayad and was the lowest Akhtar genotypes under non-stress condition; highest significant general combining ability has shown for Ks31169 under water stress in yield trait. Cross of Akhtar×AND1007 under non-stress condition, and crosses of Akhtar×Ks31169 Goli×D81083 under water stress, has shown the highest SCA for yield trait.
1- جهانسوز، م.، نقوی، ر. و طالعی، ع. ر. 1385. تعیین روابط بین صفات مختلف در ارقام لوبیا چشم بلبلی. مجله علوم کشاورزی . 12 (1): 143-149.
2- سرمدنیا، غ. 1374. اهمیت تنش های محیطی در زراعت. اولین کنگره زراعت و اصلاح نباتات ایران. دانشگاه تهران. 330 صفحه. صفحات 162-157.
3- ون شونهوون، ا. و او. ویسست. 1991. زراعت و اصلاح لوبیا. ترجمه عبدالرضا باقری، علی اکبر محمودی و فرخ دین قزلی (1380). انتشارات جهاد دانشگاهی مشهد.
4- Arunga, E. E., Van Rheenen, H. A. and Owuoche, J. O. 2010. Diallel analysis of Snap bean (Phaseolus vulgaris L.) varieties for important traits. African Journal of Agricultural Research, 5 (15), pp. 1951-1957.
5- Beebe, S. E., Rao, I. M., Blair, M. W. and Acosta-Gallegos, J. A. 2010. Phenotyping common beans for adaptation to drought. Drought Phenotyping in Crops: From Theory to Practice, pp.311-334.
6- Beebe, S. E., Rao, I. M., Cajiao, C. and Grajales, M. 2008. Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Science, 48(2), pp.582-592.
7- Dickson, M. H. 1967. Inheritance of fish face seed character in snap beans. Annu. Rep. Bean Improv. Coop. 10:11.
8- FAOSTAT, 2014. Metadata, Production, Crops Food and Agriculture Organization of United Nations—Statistics Division (http://faostat3.fao.org/download/Q/QC/E Accessed 28 May 2016)
9- Foolad, M. R. and Bassiri, A. 1983. Estimates of combining ability, reciprocal effects and heterosis for yield and yield components in a common bean diallel cross. The Journal of Agricultural Science, 100(01), pp.103-108.
10- Foschiani, A., Miceli, F. and Vischi, M. 2009. Assessing diversity in common bean (Phaseolus vulgaris L.) accessions at phenotype and molecular level: a preliminary approach. Genetic resources and crop evolution, 56(4), pp.445-453.
11- Gonçalves-Vidigal, M. C., Silvério, L., Elias, H. T., Vidigal Filho, P. S., Kvitschal, M. V., Retuci, V. S. and Silva, C. R. da. 2008. Combining ability and heterosis in common bean cultivars. Pesquisa Agropecuária Brasileira, 43(9), pp. 1143-1150
12- Griffing, B. 1956a. A generalized treatment of use of diallel crosses in quantitative inheritance. Heredity. 10: 31-50.
13- Griffing, B. 1956b. Concept of general and specific combining ability in relation to diallel crossing systems. Australian journal of biological sciences, 9(4), pp.463-493.
14- Hayman, B. I. 1954a. The analysis of variance of diallel tables. Biometrics, 10(2), pp.235-244.
15- Hayman, B. I., 1954b. The theory and analysis of diallel crosses. Genetics, 39(6), p.789.
16- Jinks, J. L. and Hayman, B. I., 1953. The analysis of diallel crosses. Maize genetics cooperation newsletter, 27, pp.48-54.
17- Kimani, J. M. and Derera, J. 2009. Combining ability analysis across environments for some traits in dry bean (Phaseolus vulgaris L.) under low and high soil phosphorus conditions. Euphytica, 166(1), pp.1-13.
18- Manifesto, M. M., Schlatter, A. R., Hopp, H. E., Suárez, E.Y. and Dubcovsky, J. 2001. Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers. Crop science, 41(3), pp.682-690.
19- Mather, k. and Jinks, J. L. 1982. Biometrical Genetics. 3nd edi. Chapman & Hall, London. 396pp
20- Mendes, F. F., Ramalho, M. A. P. and Abreu, Â. D. F. B. 2009. Índice de seleção para escolha de populações segregantes de feijoeiro-comum. Pesquisa Agropecuária Brasileira, 44 (10), pp. 1312-1318
21- Mitranov, L. 1983. A study of general and specific combining ability for productivity in kidney bean (Phaseolus vulgaris L.) cultivars. Genet Plant Breed (Sofia), 16, pp.176-180.
22- Nienhuis, J. and Singh, S. P. 1986. Combining ability analyses and relationships among yield, yield components, and architectural traits in dry bean. Crop Science, 26(1), pp.21-27.
23- Nienhuis, J. and Singh, S. P. 1988. Genetics of Seed Yield and its Components in Common Bean(Phaseolus vulgaris L.) of Middle-American Origin. Plant breeding, 101(2),pp.143-154.
24- Pereira, e., Silva, V. M., Ramalho, M. A. P., Abreu, Â. de F. B. and Silva, F. B. 2007. Estimation of competition parameters in common bean plants. Crop Breeding and Applied Biotechnology, 7 (4), pp. 360-366.
25- Polania, J., Rao, I. M., Cajiao, C., Rivera, M., Raatz, B. and Beebe, S. 2016. Physiological traits associated with drought resistance in Andean and Mesoamerican genotypes of common bean (Phaseolus vulgaris L.). Euphytica, pp.1-13.
26- Rao, I. M. 2014. Advances in improving adaptation of common bean and Brachiaria forage grasses to abiotic stresses in the tropics. In: Pessarakli M (ed) Handbook of plant and crop physiology, third edit. CRC Press, Taylor and Francis Group, New York, pp 847–88
27- SAS Institute. 2004. The SAS System for Windows. Release 9.1.3. SAS Inst., Cary, NC. USA.
28- Singh, A. K. and Saini, S. S. 1983. Heterosis and combining ability studies in French bean. SABRAO J, 15, pp.17-22.
29- Singh, S. P. 2001. Broadening the genetic base of common bean cultivars. Crop Science, 41(6), pp.1659-1675.
30- Timothy, G., Reeves, S., Rayaram, M. V., Ginkel, R., Trethowan, H., Braum, J. and Cassady, K. 2000. New wheat for a secure sustainable future. Agronomy Journal, 41-141.
31- Tukadiya, A. R., Kathiria, K. B. and Modha, K. G. 2006. Genetic components analysis for pod yield and its related traits in Indian bean (Lablab purpureus var. typicus). Vegetable Science, 33(2), pp.183-184.
32- Ukai, Y. 2006. Analysis of full and half diallel tables (DIAL. 98). Virtual Institute of Statistical Genetics. http://Ibm. ab. a u-tokyo.ac,jp/-ukai.
_||_