واکنش رشد، نمو و عملکرد بادامزمینی به تغییرات دما و غلظت دیاکسیدکربن
محورهای موضوعی : مجله علمی- پژوهشی اکوفیزیولوژی گیاهیسید علی نورحسینی 1 , افشین سلطانی 2 , حسین عجم نوروزی 3
1 - باشگاه پژوهشگران جوان و نخبگان، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
2 - استاد، گروه زراعت، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
3 - استادیار، گروه زراعت، واحد گرگان، دانشگاه آزاد اسلامی، گرگان، ایران
کلید واژه: تغییرات دما, تغییرات عملکرد, غلظت دیاکسیدکربن, مدل SSM-Peanutمراحل فنولوژیکی,
چکیده مقاله :
به منظور بررسی اثر تغییرات دما و غلظتهای مختلف دیاکسید کربن بر رشد، نمو و عملکرد بادامزمینی (رقم نورث کارولینای 2) از مدل SSM-Peanut استفاده شد. مدل SSM-Peanut ترکیبی از سناریوهای مختلف تغییر اقلیم شامل کاهش 1، 2، 3، 4، افزایش 1، 2، 3، 4، 5، 6، 7، 8 درجه سانتیگراد دما و عدم تغییر دما و همچنین غلظتهای دیاکسیدکربن به میزان 350، 400، 450، 500، 550، 600، 650 و 700 پیپیام در نظر گرفته شد. این مطالعه با استفاده از دادههای آزمایشهای مزرعهای اجرا شده در شهرستان آستانه اشرفیه صورت گرفت. شبیهسازی برمبنای دادههای هواشناسی واقعی سالهای 2007 تا 2015 ایستگاه سینوپتیک کیاشهر (شهرستان آستانه اشرفیه) اجرا شد. نتایج نشان داد که کاهش دما نسبت به شرایط کنونی منجر به افزایش روز تا مراحل فنولوژیکی بادام زمینی گردید، به طوری که با کاهش 4 درجهای دما، روز تا رسیدگی از 135 روز به 166 روز افزایش پیدا کرد. با افزایش 1 تا 5 درجه دما نسبت به شرایط کنونی، روز تا رسیدگی از 135 روز به 116 روز کاهش پیدا کرد. کاهش دما نسبت به شرایط کنونی باعث کاهش عملکرد بادامزمینی گردید، به طوری که در شرایط کنونی صرفاً با کاهش 4 درجه سانتیگراد 40 درصد از عملکرد دانه و غلاف کاهش پیدا کرد. اما با افزایش غلظت CO2 از شدت کاهش عملکرد کاسته شد، به طوری که کاهش 4 درجه سانتیگراد دما در غلظت 550 پیپیام CO2 هوا منجر به کاهش 37 درصد از عملکرد بادام زمینی کاهش شد.
In order to evaluate the effect of temperature changes at carbon dioxide concentrations on the growth, development and yield of peanuts (cultivar North Carolina 2), SSM-Peanut model was used. The SSM-peanut model was used to run different scenarios including combination of -1, -2, -3, -4, 0, 1, 2, 3, 4, 5, 6, 7, 8 oC changes in temperature and CO2 concentration of 350, 400, 450, 500, 550, 600, 650, 700 ppm. This study was performed using data from field experiments conducted in Astaneh Ashrafieh. Simulation were applied using actual meteorological data of the period 2007-2015 from Kiashahr Synoptic Station (37o23' N, 49o53' E) for future conditions and under all scenarios. The results showed that the temperature reduction compared to the current conditions, increased the day to the phonological stages in peanuts. So that, days to maturity increased from 135 to 166 days. However, fluctuation in temperature from 1 to 5oC decreased days to maturity from 135 to 116 days. Reducing the temperature compared to the current conditions reduced the yield of peanuts. So, in the present situation, the yield of seeds and pods decreased by 40%, with a decrease of 4°C. But increase in CO2 concentration will compensate this decrease, So that by reducing the temperature of 4 °C at the concentration of 550 ppm CO2 resulted in a 37% decrease in peanut yields. Increasing temperature of 2 °C resulted to increase grain yield and peanut pod by 8%.
جهاد کشاورزی. 1395. اطلاعات گیاهان زراعی استان گیلان. مدیریت جهاد کشاورزی استان گیلان، بخش آمارو و اطلاعات.
حجارپور، ا.، ا. سلطانی، ا. زینلی، و ف. سیدی. 1392. شبیه سازی اثر تغییر اقلیم بر تولید نخود در شرایط دیم و آبی کرمانشاه. پژوهشهای تولیدات گیاهی. جلد 20، شماره 2: 235-252.
سرافروزه، ف.، م. جلالی، ط. جلالی و ا. جمالی. 1390. ارزیابی اثرات تغییر اقلیم آینده بر مصرف آب محصول گندم در تبریز. فصلنامهی علمی- پژوهشی فضای جغرافیایی. جلد 12، شماره 37: 96-81.
سلطانی، ا. و ب. ترابی. 1388. مدلسازی گیاهان زراعی، مطالعات موردی. انتشارات جهاد دانشگاهی مشهد. چاپ اول. 232 صفحه.
قلیپور، م و ا. سلطانی. 1384. بررسی اثرات تغییر اقلیم بر خصوصیات رشدی و عملکرد دانه گندم زمستانی در شرایط دیم و فاریاب تبریز با استفاده از شبیه سازی. مجله دانش کشاورزی. جلد 15، شماره 3: 163- 176.
کوچکی، ع.ر. و سرمدنیا، غ.ح. 1386. فیزیولوژی گیاهان زراعی (ترجمه). تألیف: گاردنر، ف.پ.، پیرس، آر.ب. و میشل، آر.ال. انتشارات جهاد دانشگاهی مشهد. چاپ سیزدهم. 400 صفحه.
کوچکی، ع.ر. و م. نصیری. 1387. تاثیر تغییر اقلیم همراه با افزیش غلظت CO2 بر عملکرد گندم در ایران و ارزیابی راهکارهای سازگاری. پژوهشهای زراعی ایران. جلد 6، شماره 1: 139-153.
نهبندانی، ع.ر. و ا. سلطانی. 1395. شبیهسازی اثر تغییر اقلیم بر نمو، نیاز آبیاری و عملکرد سویا در گرگان. نشریه آب و خاک. جلد 30، شماره 1: 77-87.
Abraha, M.G. and M.J. Savage. 2006. Potential impacts of climate change on the grain yield of maize for the midlands of KwaZulu-Natal, South Africa. Agric. Ecosyst. Environ. 15:150-160.
Batjes, N.H. 2000. Global Soil Profile Data (ISRIC-WISE)" [Global Soil Profile Data (International Soil Reference and Information Centre - World Inventory of Soil Emission Potentials)]. Data set. Available on-line [http://www.daac.ornl.gov] from ORNL Distributed Active Archive Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.
Carroll, E, T. Sparks, A. Donnelly and T. Cooney. 2009. Irish phenological observations from the early 20th century reveal a strong response to temperature, Biology and Environment, Pp116-126. Proceedings of the Royal Irish Academy, Vol. 109B.
Chiotti, Q.P. and T. Johnston. 1995. Extending the boundaries of climate change research: A discussion on agriculture, J. Rural Stud. 11: 335-350.
Crepinsek, Z., L. Kajfez-Bogataj and K. Bergant. 2006. Modeling of weather variability effect on phytophenology. Ecological Modelling. 194: 256-265.
Gholipoor, M. and A. Soltani. 2009. Future climate impacts on chickpea in Iran and ICARDA. Res. J. Environ. Sci. 3: 16-28.
Hajarpoor, A., A. Soltani, E. Zeinali and F. Sayyedi. 2014. Simulating climate change impacts on production of chickpea under water-limited conditions. Agric. Sci. Dev. 3(6): 209-2017
Hatfield, J.L., K.J. Boote, B.A. Kimball, L.H. Ziska, R.C. Izaurralde, D. Ort, A.M. Thomson and D. Wolfe. 2011. Climate Impacts on Agriculture: Implications for Crop Production. Agro. J. 103: 351-370.
Hengeveld, H.G. 2000. Projections for Canada’s climate future. A discussion of recent simulations with the Canadian Global Climate Model. CCD 0001, Environment Canada.
IPCC (Intergovernmental Panel on Climate Change). 2001. Summary for policymakers. Report of Working Group I. Climate Change 2001: The scientific basis.http://www.meto.gov.uk/sec5/CR_div/ipcc/wg1/WGI-SPM.pdf.
IPCC (Intergovernmental Panel on Climate Change). 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability. Summary for Policy Makers.
IPCC (Intergovernmental Panel on Climate Change). 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Synthesis Report. Summary for Policymakers.
Islam, A., L.R. Ahuja,L.A. Garcia, L. Ma, A.S. Saseendran. and T.J. Trout. 2012. Modeling the impacts of climate change on irrigated corn production in the Central Great Plains. Agric. Water Manage. 110(1): 94-108.
Koocheki, A., M. Nassiri, A. Soltani, H. Sharif and R. Ghorbani. 2006. Effects of climate change on growth criteria and yield of sunflower and chickpea crops in Iran. Clim. Res. 30: 247-253.
Koocheki, A., M. Nassiri, A. Soltani, H. Sharifi and R. Ghorbani. 2006. Effects of climate change on growth criteria and yield of sunflower and chickpea crops in Iran. Clim. Res. 247-253.
Ludwig, F. and S. Asseng. 2006. Climate change impacts on wheat production in a Mediterranean environment in Western Australia. Agric. Syst. 90:159-179.
Maiti, R. and P.W. Ebeling. 2002. The Peanut (Arachis hypogaea) Crop. Science Publishers, Inc. 376p.
Mall, R., M. Lal, V. Bhatia, L. Rathore and R. Singh. 2004. Mitigating climate change impact on soybean productivity in India: a simulation study. Agric. Forest Meteorol. 121(2):113-125.
Noorhosseini, S.A., A. Soltani and H. Ajamnoroozi. 2017. Simulating peanut (Arachis hypogaea L.) growth and yield with the use of the simple simulation model (SSM). Comput. Electron. Agric. In press, 14p.
Orlandi, F., L. Ruga, B. Romano and M. Fprnaciari. 2005. Olive flowering as an indicator of local climate changes. Theor. App. Climatol. 81:169-176.
Prasad, P.V.V., K.J. Boote, L.H. Allen, J.E. Sheehy and J.M.G. Thomas. 2006. Species, ecotype and cultivardifferences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res. 95(3):398–411.
Reidsma, P., F. Evert and A.O. Lansink. 2007. Analysis of farm performance in Europe under different climatic and management conditions to improve understanding of adaptive capacity. Clim. Change. 84: 403-422.
Sakalauskiene, S., A. Brazaityte and J. Sakalauskaite. 2008. Complex influence of different humidityand temperature regime on PEA photosynthetic indices in VI-VII organogenesis stages. Pp.106.Abstracts of International Scientific Conference, actualities in plant physiology. 12-13 June Lithuanian University of Agriculture, Babtai.
Soltani, A. and M. Gholipoor. 2006. Simulating the impact of climate change on growth, yield and water use of chickpea. J. Agri. Sci. Natur. Resour. 13(2): 69-79.
Soltani, A. and T.R. Sinclair. 2012. Modeling Physiology of Crop Development, Growth and Yield. CABI, Wallingford, U.K.
Soltani, A., Gholipoor, M. and Ghassemi-Golezani, K. 2007. Analysis of temperature and atmospheric CO2 effects on radiation use efficiency in chickpea (Cicerarietinum L.). J. Plant Sci. 2(1):89-95.
Tacarindua, C.R., T. Shiraiwa, K. Homma, E. Kumagai and R. Sameshima. 2013. The effects of increased temperature on crop growth and yield of soybean grown in a temperature gradient chamber. Field Crops Res. 154(1):74-81.
Wheeler, T.R., T.D. Hong, R.H. Ellis, G.T. Batts, J.I.L. Morison and P.Hadley. 1996. Theduration and rate of grain growth, and harvest index, of wheat (Triticumaestivum L.) in response to temperature and CO2. J. Exp. Bot. 47(5): 623–630.
Wielgolaski, F.E. 1999. Starting dates and basic temperatures in phenological observations of plants. Int. J. Biometeorology. 42: 158-168.
_||_