بررسی اثرات زیست محیطی نظام تولید بادام زمینی در آستانه اشرفیه بر مبنای مصرف کود نیتروژن با استفاده از ارزیابی چرخه حیات (LCA)
محورهای موضوعی : مجله علمی- پژوهشی اکوفیزیولوژی گیاهیسید علی نورحسینی 1 , امین نیکخواه 2
1 - باشگاه پژوهشگران جوان و نخبگان، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
2 - باشگاه پژوهشگران جوان و نخبگان، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
کلید واژه: کود شیمیایی, مصرف نیتروژن, گرمایش جهانی, اوتریفیکاسیون, تخلیه منابع,
چکیده مقاله :
به منظور ارزیابی اثرات زیست محیطی نظام تولید بادامزمینی بر مبنای مصرف کود نیتروژن تحقیقی به روش ارزیابی چرخه حیات در منطقه آستانه اشرفیه در سال 1394 انجام گرفت. بدینمنظور، آزمایش مزرعهای در قالب طرح بلوکهای کامل تصادفی در سه سطح مصرف نیتروژن (شاهد، 30 و 60 کیلوگرم در هکتار) و در سه تکرار اجرا شد. در این مطالعه، شش گروه تأثیر زیست محیطی گرمایش جهانی، اسیدیته، اوتریفیکاسیون خشکی، تخلیه منابع فسیلی، تخلیه منابع فسفات و تخلیه منابع پتاسیم بررسی شدند. اثرات در قالب دو واحد عملکردی شامل تولید یک تن بادامزمینی و تولید 1000 مگاژول انرژی مطالعه شدند. نتایج نشان داد که شاخص زیستمحیطی (Eco-X) در تولید یک تن بادامزمینی با در نظر گرفتن گرمایش جهانی، اسیدیته و اوتریفیکاسیون خشکی برای تیمارهای شاهد، 30 و 60 کیلوگرم مصرف نیتروژن در هکتار به ترتیب 18/0، 52/0 و 66/0 بهدست آمد. شاخص تخلیه منابع (RDI) نیز برای تولید یک تن بادامزمینی با در نظر گرفتن مصرف سوخت دیزل، مصرف کود فسفات و مصرف کود پتاسیم برای تیمارهای شاهد، 30 و 60 کیلوگرم مصرف نیتروژن در هکتار به ترتیب 80/0، 53/0 و 30/0 محاسبه شد. در مجموع، گروههای تاثیر زیست محیطی (گرمایش جهانی، اسیدیته و اوتریفکاسیون خشکی) بیشترین آسیب به محیط زیست را در مصرف مقادیر بالاتر کود نیتروژن داشتند.
In this study, in order to determine the environmental impacts of peanut production in Astaneh Ashrafieh based on nitrogen fertilizer consumption a research was conducted using life cycle assessment methodology in 2015. A field experimental was performed with randomized complete block design in three levels of nitrogen consumption (0, 30 and 60 kgha-1) in three replications. These effects in six groups; the global warming, acidification, terrestrial eutrophication, the depletion of fossil resources, the depletion of potassium and the depletion of phosphate were investigated. Two functional units included one tonne of peanut and generation of 1000 MJ energy were considered to evaluate the environmental impacts. The results showed that the environmental index (Eco-indeX) with regard to global warming, acidification, terrestrial eutrophication for treatment of control, 30 and 60 kg of nitrogen per hectare were 0.18, 0.52 and 0.66, respectively. Also, resources depletion index (RDI) for one-ton production of peanut with regard to depletion of fossil resources, the depletion of potassium and the depletion of phosphate for treatment of control, 30 and 60 kg of nitrogen per hectare were determined to be 0.80, 0.53 and 0.30, respectively. Overall, the Eco-Index impact categories (global warming, acidification, terrestrial eutrophication) showed the greatest negative effects on the environment for the highest level of nitrogen consumption.
طاهریراد، ع. نیکخواه، ا. خجستهپور، م. و نوروزیه، ش. 1394. بررسی انتشار گازهای گلخانهای، تحلیل انرژی و هزینههای تولید پنبه در استان گلستان، نشریه ماشین های کشاورزی، 5(2): 445-428.
ملافیلابی، ع. خرم دل، س. امین غفوری، ا. حسینی، م. 1393. بررسی اثرات زیست محیطی نظام تولید زعفران در استان خراسان بر مبنای کود نیتروژن با استفاده از ارزیابی چرخه حیات. پژوهش های زعفران. ۲: ۱۶۵-۱۷۹.
نورحسینی، س.ع.، صفرزاده، م.ن. و صادقی، س.م. 1395. بررسی اثر منطقه تولید و وزن بذر بر برخی خصوصیات مرتبط با قابلیت جوانهزنی و بنیه گیاهچه بادام زمینی (Arachis hypogaea L). مجله علوم و فناوری بذر ایران. 5(1): 75-91.
Bacenetti, J., Pessina, D., Marco Fiala, M., 2016. Environmental assessment of different harvesting solutions for Short Rotation Coppice plantations.Science of the Total Environment 541, 210–217.
Bell, M.J., Muchow, R.C. and Wilson, G.L. 1987. The effect of plant population on peanuts (Arachis hypogaea) in a monsoonal tropical environmental. Field Crop Res. 17: 91-107.
Brentrup, F., Küsters, J., Kuhlmann, H., and Lammel, J. 2004a. Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. Theoretical concept of a LCA method tailored to crop production. European Journal of Agronomy, 20(3): 247-264.
Brentrup, F., Küsters, J., Lammel, J. and Kuhlmann, H. 2000. Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. The International Journal of Life Cycle Assessment, 5(6): 349-357.
Brentrup, F., Küsters, J., Lammel, J., Barraclough, P., and Kuhlmann, H. 2004b. Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology II. The application to N fertilizer use in winter wheat production systems. European Journal of Agronomy, 20(3): 265-279.
CPM, (2007) SPINE@CPM database. Competence center in environmental assessment of product and material systems (CPM), Chalmers University of Technology,Goteborg.
Dehghani, H. 2007. Guide to Air Quality, Principles of Meteorology and Air Pollution. Publications of Ghashie.
Tehran, Iran 402 p.
Emadi, B., Nikkhah A., Khojastehpour, M., Payman, S.H. 2015. Effect of farm size on energy consumption and input costs of peanut production in Guilan province of Iran. Journal of Agricultural Machinery, 5(1): 217-227.
Erdal, G., Esengün, K., Erdal, H., Gündüz, O. 2007. Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energy, 32: 35-41.
Fallahpour, F., Aminghafouri, A., Ghalegolab-Behbahani, A., Bannayan, M., 2012. The environmental impact assessment of wheat and barley production by using life cycle assessment (LCA) methodology. Environ. Dev. Sustain. 14: 979-992.
FAO. 2010. Production statistics of crops. Food and Agriculture Organization (http://faostat.fao.org/site/567/default.aspx#ancor).
Fasina, O.O. 2008. Physical properties of peanut hull pellets. Bioresource Technology, 99(5): 1259-1266.
Firouzi, S. and Nikkhah, A. 2015. Life cycle assessment of peanut production in sole cropping and mixed intercropping with bean systems. Journal of Plant Ecophysiology, 7(22): 268-279.
Gardner, F.P. and Auma, E.O. 1988. Canopy structure, light interception, yield and market quality of peanut genotypes as influenced by planting pattern and planting date. Field Crop Res. 20: 13-29.
Gasol, C.M., Gabarrell, X., Anton, A., Rigola, M., Carrasco, J., Ciria, P., Solano, M.L., and Rieradevall, J. 2007.
Life cycle assessment of a Brassica carinata bioenergy cropping system in southern Europe. Biomass and Bioenergy, 31(8): 543-555.
Goebes, M.D., Strader, R., and Davidson, C. 2003. An ammonia emission inventory for fertilizer application in the United States. Atmospheric Environment 37(18): 2539-2550.
Gohari, A.A. 2010. Effect Investigation of Irrigation Management and Nitrogen Fertilizer on Yield and its Components on Peanut (Arachis hypogaea L.) In Guilan Province. M.S.c Thesis of Irrigationon: Irrigation and Drainage. Islamic Azad University of Shooshtar Branch. 99p.
Gohari, A.A. and Noorhosseini, S.A. 2010. Effects of Iron and Nitrogen Fertilizers on Yield and Yield Components of Peanut (Arachis hypogaea L.) in Astaneh Ashrafiyeh, Iran. American-Eurasian J. Agric. & Environ. Sci., 9(3): 256-262.
Hosseinzadeh, A. R., Esfahani, M., Asghari, J., Safarzadeh, M. N. and Rabiei, B. 2009. Effect of sulfur fertilizer on growth and yield of peanut (Arachis hypogaea L.). Journal of Sciences and Technology of Agriculture and Natural Resources, 48: 27-38.
Iriarte, A., Rieradevall, J., and Gabarrell, X. 2010. Life cycle assessment of sunflower and rapeseed as energy crops
under Chilean conditions. Journal of Cleaner Production, 18(4): 336-345.
Khanali, M., Movahedi, M., Yousefi, M., Jahangiri, S., Khoshnevisan, B. 2016. Investigating energy balance and carbon footprint in saffron cultivation – a case study in Iran. Journal of Cleaner Production, 115, 162-171.
Khorramdel, S. 2011. Evaluation of the potential of carbon sequestration and life cycle assessment (LCA) approach
in different management systems for corn. PhD thesis, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran.
Khorramdel, S., Rezvani-Moghaddam, P., Amin-Ghafori, A., 2014. Evaluation of environmental impacts for wheat Agroecosystems of Iran by using Life Cycle Assessment methodology. Cereal Research 4(1), 27-44.
Kirchmann, H., Thorvaldsson, G., 2000. Challenging targets for future agriculture. European Journal of Agronomy, 12: 145–161.
Liu, Y., Langer, V., Høgh-Jensen, H., Egelyng, H., 2010. Life Cycle Assessment of fossil energy use and greenhouse gas emissions in Chinese pear production. Journal of Cleaner Production, 18: 1423-1430.
Mengel, K., and Kirby, E. 1978. Principle of Plant Nutrition. International Potosh Institute, Berne. Pp: 150-159.
Mirhaji, H., Khojastehpour, M., Abaspour-fard, M.H., and Mahdavi Shahri, S.M. 2012. Environmental impact study
of sugar beet production using life cycle assessment in Khorasan province. Agroecology, 4: 112-120.
Mirhaji, H., Khojastehpour, M., and Abaspour-fard, M.H. 2013. Environmental effects of wheat production in
Marvdasht region. Journal of Natural Environment, 66(2): 223-232.
Mishra, S. N. and Singh, A. P. 1989. Studies on sulphur and phosphorus availability and uptake by groundnut. Legume Res., 12(4): 160-164.
Mohammadi, A., Tabatabaeefar, A., Shahin, S., Rafiee, S., Keyhani, A., 2008. Energy use and economical analysis of potato production in Iran a case study: Ardabil province. Energy Conversion and Managemen, 49: 3566-3570.
Mohammadi, K., Sohrabi, Y., 2014. Effects of integrated methods of fertilization on soil nitrogen, phosphorus, biological properties, and canola traits. Iranian Journal of Soil Research, 28(1): 27-38 .
Nikkhah, A., Emadi, B., Soltanali, H., Firouzi, S., Rosentrater, K., Allahyari, M.S. 2016. Integration of Life Cycle Assessment and Cobb-Douglas Modeling for the Environmental Assessment of Kiwifruit in Iran, Journal of Cleaner Production, 2016, 137, 843-849.
Nikkhah, A., Khojastehpour, A, Emadi, B. Taheri-Rad, A.R., Khorramdel, S. 2015. Environmental impacts of peanut production system using life cycle assessment methodology. Journal of Cleaner Production, 92: 84-90.
Ozkan, B., Akcaoz, H., and Fert, C. 2004. Energy input–output analysis in Turkish agriculture. Renewable Energy
29(1): 39-51.
Panjtandoust, M., 2008. Effect of iron on yield quality and quantity of Peanut (Arachis hypogaea L.) plants in Guilan province. Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Agronomy, Crop Physiology. Tarbiat Modares University, 100 p.
Pishgar-Komleh, S.H., Sefeedpari, P., and Rafiee, S. 2011. Energy and economic analysis of rice production under
different farm levels in Guilan province of Iran. Energy 36(10): 5824-5831.
Ramedani, Z., Rafiee, S., and Heidari, M.D. 2011. An investigation on energy consumption and sensitivity analysis
of soybean production farms. Energy, 36(11): 6340-6344.
Snedecor, G.W. and Cochran, W.G. 1989. Statistical Methods. Iowa State University Press.
Snyder, C.S., Bruulsema, T.W., Jensen, T.L., and Fixen, P.E. 2009. Review of greenhouse gas emissions from crop
production systems and fertilizer management effects. Agriculture, Ecosystems and Environment 133(3–4): 247-266.
Soltanali, H., Emadi, B., Rohani, A., Khojastehpour, M., Nikkhah , A. 2015. Life cycle assessment modeling of milk production in Iran, Information Processing in Agriculture, 2015, 2: 101-108.
Soltani, A., Rajabi, M.H., Zeinali, E. and Soltani, E. 2010. Evaluation of environmental impact of crop production using LCA: wheat in Gorgan. Electronic Journal of Crop Production 3(3): 201-218.
Tzilivakis, J., Warner, D.J., May, M., Lewis, K.A. and Jaggard, K. 2005. An assessment of the energy inputs and
greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK. Agricultural Systems, 85(2): 101-119.
Wang, M., Wu, W., Liu, W.,\ and Bao, Y. 2007. Life cycle assessment of the winter wheat-summer maize production
system on the North China Plain. International Journal of Sustainable Development and World Ecology, 14(4): 400-407.
Wang, M., Xia, X., Zhang, Q. and Liu, J., 2010. Life cycle assessment of a rice production system in Taihu region, China. International Journal of Sustainable Development & World Ecology, 17(2): 157-161.
_||_