پیش بینی قیمت سهام توسط رویکرد رگرسیون لاسو در بورس اوراق بهادار تهران (ایران)
محورهای موضوعی : بورس اوراق بهادارامیر صادقی 1 , امیر حسین کمالی دولت آبادی 2
1 - استادیار، گروه ریاضی کاربردی، واحد پرند، دانشگاه آزاد اسلامی، تهران، ایران
2 - استادیار، گروه مهندسی صنایع، واحد پرند، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: تابلو خوانی, درصد تغییر قیمت, پیش بینی قیمت سهام, رگرسیون لاسو,
چکیده مقاله :
پیش بینی رفتار بازار سرمایه همواره یکی از چالش های سرمایه گذاران و تحلیل گران بازار است. در طول سالیان متمادی همواره روش های پیش بینی روندها، تکامل یافته و دانش پیش بینی رفتار و قیمت سهام همچنان در حال توسعه است. نکته حائز اهمیت تحلیل رفتار گذشته قیمت سهام براساس روش های تکنیکال می باشد، که این سبک تحلیل غالباً بر تغییرات قیمت، میانگین های متحرک و حجم معاملات و غیره متمرکز می باشد. در روش های پیش بینی معمول تاکنون کمتر به نقش بازیگران حقیقی و حقوقی، روان شناسی بازار و تابلوخانی پرداخته شده است. در این مقاله سعی شده با بررسی نسبت های معاملاتی مبتنی بر تابلو خوانی و تحلیل رفتار گذشته و تحرک های معامله گران حقیقی در غالب رگرسیون خطی لاسو مورد بررسی قرار گیرد. پیش بینی قیمت برای شش سهم منتخب از بورس اوراق بهادار تهران به روش مذکور انجام شد و نتایج بسیار دقیقی در مقایسه با رگرسیون خطی بدست آمد.
Predicting capital market behavior has always been one of the challenges for market participants. Over the years, trends forecasting methods have evolved and knowledge of predicting behavior and stock prices is still evolving. It is important to analyze the past behavior of stock prices based on technical methods. The technical method is often focused on price changes, moving averages and trading volume. In this research, we have tried to study the trading ratios based on table reading and analyze the past behavior and movements of real traders in the form of Lasso linear regression.Over the years, trends forecasting methods have evolved and knowledge of predicting behavior and stock prices is still evolving. It is important to analyze the past behavior of stock prices based on technical methods. The technical method is often focused on price changes, moving averages and trading volume. In this research, we have tried to study the trading ratios based on table reading and analyze the past behavior and movements of real traders in the form of Lasso linear regression.
1) خنجرپناه، حسين؛ داود دوروش، سعيد شوال پور، آرمين جبارزاده. 1397. كاربرد روش تكنيكال براي پیشبینی قيمت سهام: رويكرد مدلهای احتمال غيرخطي و شبکههای عصبي مصنوعي. راهبرد مدیریت مالی. 59-79.
2) سیف زاده، تارا و اسدی صمدی، دانیال و کفاش، عطیه،1399. ارائه یک سیستم خبره پیشبینی قیمت سهام در بورس مبتنی بر شبکه عصبی فازی، پنجمین کنفرانس ملی مهندسی کامپیوتر و بلاک چین ایران، تهران.
3) فتح علیان، سمانه و نبوی چاشمی، سیدعلی و چیرانی، ابراهیم،1399. تبیین الگوی بهینه ارزیابی و قیمتگذاری عرضه اولیه عمومی سهام با استفاده از تکنیک¬های تصمیمگیری چند معیاره فازی، رگرسیون، شبکه عصبی و الگوریتم ژنتیک، مهندسی مالی و مدیریت اوراق بهادار، دوره: 11، شماره:42
4) مشاري، محمد؛ حسين ديده خاني، كاوه خليلي دامغاني، ابراهيم عباسي. 1398. طراحي مدل هوشمند تركيبي جهت پیشبینی نقاط طلايي قيمت سهام. دانش سرمایهگذاری. 45-65.
5) موسوي، سيد عليرضا؛ افسانه غلامي. 1397. استفاده از الگوريتم تركيبي عصبي كرم شبتاب و روش رگولاسيون بيزين جهت پیشبینی قيمت سهام. مهندسی مالی و مدیریت اوراق بهادار. 295-321.
6) Beyaz, E. Tekiner, F. Zeng, X. J. & Keane, J. (2018, June). Comparing technical and fundamental indicators in stock price forecasting. In 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS) (pp. 1607-1613). IEEE.
7) Chen, Y. J. Chen, Y. M. Tsao, S. T. & Hsieh, S. F. (2018). A novel technical analysis-based method for stock market forecasting. Soft Computing, 22(4),
1295-1312
8) Ciner, C. (2019). Do industry returns predict the stock market? A reprise using the random forest. The Quarterly Review of Economics and Finance, 72, 152-158.
9) Daelemans, B. Daniels, J. P. & Nourzad, F. (2018). Free Trade Agreements and Volatility of Stock Returns and Exchange Rates: Evidence from NAFTA. Open Economies Review, 29(1), 141-163.
10) Feng Zhou Qun Zhang, Didier Sornette, Liu Jiang.(2019). Cascading logistic regression onto gradient boosted decision trees for forecasting and trading stock indices. Applied Soft Computing Journal 84 (2019) 105747
11) Guang Liu & Xiaojie Wang(2019). & A new metric for individual stock trend prediction in Engineering Applications of Artificial Intelligence 82 (2019) 1-12- Elsevier
12) Lahmiri, S. (2018). Minute-ahead stock price forecasting based on singular spectrum analysis and support vector regression. Applied Mathematics and Computation, 320, 444-451
13) Mittnik, S. Robinzonov, N. & Spindler, M. (2015). Stock market volatility: identifying major drivers and the Nature of Their Impact. Journal of Banking & Finance, 58, 1-14.
14) Padhi, D. K. Padhy, N. & Mishra, J. (2020, March). Intraday Stock Prices Forecasting Using an Autoregressive Model. In 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA) (pp. 1-6). IEEE.
15) R. Dash, P.K. Dash(2016). “A hybrid stock trading framework integrating technical analysis with machine learning techniques”, J Finance Data Sci, 2 (1), pp. 42-57.
16) Rodriguez J. V. Torra S. Felix J. A. (2005); “STAR andANN models: Forecasting Performance on SpanishIbex-35 Stock Index”, Journal of EmpiricalFinance, no. 12
17) Roy, S. S. Mittal, D. Basu, A. & Abraham, A. (2015). Stock market forecasting using LASSO linear regression model. In Afro-European Conference for Industrial Advancement (pp. 371-381). Springer, Cham.
18) Setiawan, B. (2018). Lasso technique application in stock market modelling: An empirical evidence in indonesia. Sriwijaya International Journal of Dynamic Economics and Business, 2(1), 51-62.
19) Shahrokh Asadi.(2018). Evolutionary fuzzification of RIPPER for regression: case study of stock prediction. Neurocomputing 2019, Pages 121-137
20) Sharma, A. & Mehra, A. (2016). Financial analysis based sectoral portfolio optimization under second order stochastic dominance. Annals of Operations Research, 1-27
21) Teixeira, L. A. & De Oliveira, A. L. I. (2010). A method for automatic stock trading combining technical analysis and nearest neighbor classification. Expert systems with applications, 37(10), 6885-6890
22) Wang, S. Ji, B. Zhao, J. Liu, W. & Xu, T. (2018). Predicting ship fuel consumption based on LASSO regression. Transportation Research Part D: Transport and Environment, 65, 817-824.
23) Yang, X. & Wen, W. (2018). Ridge and lasso regression models for cross-version defect prediction. IEEE Transactions on Reliability, 67(3), 885-896.
24) Yensen Ni,Paoyu Huang, Yuhsin Chen. (2019) Board structure, considerable capital, and stock price overreaction informativeness in terms of technical indicators. The North American Journal of Economics and Finance Volume 48, April 2019, Pages 514-528
25) Zhang, J. Teng, Y. F. & Chen, W. (2019). Support vector regression with modified firefly algorithm for stock price forecasting. Applied Intelligence, 49(5), 1658-1674