ارائه ی مدلی جهت پیش بینی روند بازار سهام از طریق تشخیص الگوهای فراکتال مبتنی بر تئوری امواج الیوت با استفاده از روش یادگیری عمیق
محورهای موضوعی : مهندسی مالیمسعود نادم 1 , یحیی کامیابی 2 , اسفندیار ملکیان 3
1 - گروه حسابداری، دانشکده ی علوم اقتصادی و اداری، دانشگاه مازندران، بابلسر، ایران
2 - گروه حسابداری، دانشکده ی علوم اقتصادی و اداری، دانشگاه مازندران، بابلسر، ایران.
3 - گروه حسابداری، دانشکده ی علوم اقتصادی و اداری، دانشگاه مازندران، بابلسر، ایران.
کلید واژه: فراکتال, امواج الیوت, یادگیری عمیق, الگوهای موجی, شبکه های عصبی بازگشتی,
چکیده مقاله :
امروزه هوش مصنوعی در تشخیص الگوهای نموداری در تحلیل تکنیکال تحولی بزرگ ایجاد کرده است. البته ظهور روشهای جدید و پیچیده در تحلیل تکنیکال، هر بار چالش نویی برای روشهای هوش مصنوعی فراهم کرده است. از جمله روشهای مورد اقبال و پیچیدهی تحلیل تکنیکال، تئوری امواج الیوت است. از طرف دیگر سرعت پیشرفت روشهای هوش مصنوعی نیز به گونه ای است که هر بار روشی قدرتمندتر معرفی میگردد. از جمله روشهای نوین و قدرتمند هوش مصنوعی روش یادگیری عمیق است. لذا در پژوهش حاضر به ارائهی مدلی جهت پیشبینی روند بازار سهام از طریق تشخیص الگوهای فراکتال مبتنی بر تئوری امواج الیوت با استفاده از روش یادگیری عمیق پرداخته شده است. در این پژوهش تعداد 15 الگوی امواج الیوت مدنظر قرار گرفت و سپس تعداد 1002 نمونه از نمودارهای قیمت سهام شرکت های حاضر در بورس ایران، برای الگوها جمع آوری و برچسب گذاری گردید و نهایتاً برای تشخیص به عنوان ورودی به الگوریتم یادگیری عمیق با بکارگیری مدل شبکه های عصبی بازگشتی وارد گردید. در این پژوهش از نرم افزار RapidMiner 9.9 و جهت تعیین توان مدل از معیار صحت استفاده شد. نتایج حاصل نشان دهندهی صحت 61 درصدی در تشخیص الگوها توسط مدل است.
Today, artificial intelligence has made a big change in the recognition of chart patterns in technical analysis. Although, the emergence of new and complex analytical methods in technical analysis has provided a new challenge for artificial intelligence methods. One of the popular and complex technical analysis methods is Elliott Wave Theory. On the other hand, the speed of progress of artificial intelligence methods is such that a more powerful method is introduced every time. One of the new and powerful artificial intelligence methods is the deep learning method. Therefore, in this research, a model has been presented to predict the trend of the stock market through the detection of fractal patterns based on Elliott wave theory using deep learning method. In this research, 15 Elliott wave patterns were considered, and then 1002 samples of stock price charts of companies listed on Tehran Stock Exchange were collected and labeled for patterns, and finally entered as input into deep learning algorithm using recurrent neural network model for recognition. In this research, RapidMiner 9.9 software was used and accuracy criteria were used to determine the power of the model. Based on the results, the accuracy of developed model in recognizing patterns is 61%.
_|1) دانایی فرد، حسن. الوانی، سید¬مهدی و آذر، عادل. (1394). روش¬شناسی پژوهش کمی در مديريت: رويکردی جامع. چاپ دهم. انتشارات صفار. تهران.
2) ذوالفقاری، مهدی. سحابی، بهرام و بختیاران، محمدجواد. (1399). طراحی مدلی جهت پیش¬بینی بازده¬ی شاخص کل بورس اوراق بهادار )با تأکیدبرمدل¬های
3) ترکیبی شبکه¬ی یادگیری عمیق و مد¬ل¬های خانواده¬ی GARCH). فصلنامه مهندسی مالی و مدیریت اوراق بهادار. شماره چهل و دوم . بهار 1399.
4) زنگنه، امیر. (1398). مرجع تحلیل تکنیکال کاربردی. چاپ دوم. تهران. آراد کتاب.
5) سیف، سمیرا. جمشیدی نوید، بابک. قنبری، مهرداد و اسماعیل پور، منصور. (1400). پیش¬بینی روند بورس سهام ایران با استفاده از نوسان¬نمای امواج الیوت و شاخص قدرت نسبی. نشریه تحقیقات مالی. پیاپی 61 . بهار 1400.
6) شریف فر، امیر. خلیلی عراقی، مریم. رئیسی وانانی، ایمان و فلاح، میرفیض. (1400). ارزیابی و اعتبارسنجی¬معماری¬بهینه¬ی¬یادگیری¬عمیق¬در¬پیش¬بینی¬قیمت¬سهام (رویکرد ¬الگوریتم¬ حافظه¬ی¬ کوتاه¬ مدت ماندگار LSTM). فصلنامه مهندسی مالی و مدیریت اوراق بهادار. شماره چهل و هشتم. پائیز 1400.
7) محمدشریفی، ابوصالح. خلیلی دامغانی، کاوه. عبدی، فرشید و سردار، سهیلا. (1400). پيش¬بيني قيمت بيت¬کوین با استفاده از مدل ترکيبي ARIMAو یادگيری عميق. فصلنامة مطالعات مديريت صنعتی. دوره¬ی نوزدهم. شماره 16. تابستان 1400.
8) معمارزاده، سیده فائزه. خسروی¬فارسانی، هادی و جاودانی گندمانی، تقی. (1401). ارائه¬ی يك روش مبتني¬بر¬يادگيري¬عميق¬جهت¬پيش¬بيني¬قيمت¬سهام.هشتمین¬همایش¬بین¬المللی¬تحقیقات¬وب. تهران.1401.
9) میرزایی، مهدی. (1397). مبانی اصول امواج الیوت. چاپ دوم. تهران. آراد کتاب.
10) Atsalakis, George S. Dimitrakakis, Emmanouil M. Zopounidis, Constantinos D. Zopounidis. (2011). “Elliott Wave Theory and neuro-fuzzy systems, in stock market prediction: The WASP system”. Expert Systems with Applications 38 (2011) 9196–9206.
11) Cohen, N. Sharir, O. Shashua, A. (2016). “On the expressive power of deep learning: A tensor analysis”. COLT. pp. 698–728.
12) Dixit, A. Tiwari, M. Pathak, H. Astya, R. (2018). "An Overview of Deep Learning Architectures, Libraries and Its Applications Areas". International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), Greater Noida (UP), India. pp: 293-297.
13) Elliott RN (1938), The wave principle, reprinted. In: Prechter RR Jr (ed) 1994. R. N, Elliott’s Masterworks.
14) Frost, A, J. Prechter, Robert R, Jr.(2001). Elliott Wave Principle: Key to Market
Behavior. Published by Wiley.
15) Hiransha M, E.A. Gopalakrishnan, Vijay Krishna Menon, and K.P. Soman; (2018) "Nse stock market prediction using deep-learning models." Procedia Computer Science, 132:1351–1362.
16) Kyu, Beom Lee. Hyu, Soung Shin. (2019). “An Application of a Deep Learning Algorithm for Automatic Detection of Unexpected Accidents Under Bad CCTV Monitoring Conditions in Tunnels”. International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML).
17) Sezer, O.B. Ozbayoglu, A.M. (2018) "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach". Applied Soft Computing Journal.
18) Volna, Eva. Kotyrba, Martin. Jarusek, Robert. (2013). “Multi-Classifier Based on Elliott Wave’s Recognition”. Computers and Mathematics with Applications. Vol 66 . 213–225.
19) Volna, Eva. Kotyrba, Martin. Kominkova Oplatkova, Zuzana. Senkerik, Roman. (2016). “Elliott waves classification by means of neural and pseudo neural networks”. Springer. Published Online. 3 march.
20) Wu, Chih-Hung; Fang, Wen-Chang. (2011) ''Combining the Fuzzy Analytic Hierarchy Process and the fuzzy Delphi method for developing critical competences of electronic commerce professional managers'', Qual Quant, Vol. 45, PP. 751–768.
21) Zhang , C. Xu, L. Li, X. Wang, H. (2018). "A Method of Fault Diagnosis for Rotary Equipment Based on Deep Learning". Prognostics and System Health Management Conference (PHM-Chongqing). pp: 958-962.
22) Zhong, G. Cheriet, M. (2014). “Large Margin Low Rank Tensor Analysis”. Neural Computation. 26 () 761–780.
|_