ارائه مدلی برای انتخاب سبد بهینه سهام با استفاده از الگوریتم هوش جمعی سالپ و شبکههای عصبی پرسپترون چندلایه
محورهای موضوعی :
مهندسی مالی
سید علی حسینی
1
,
زهرا پورزمانی
2
,
آزیتا جهانشاد
3
1 - گروه حسابداری، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه حسابداری، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران
3 - گروه حسابداری، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران
تاریخ دریافت : 1399/06/04
تاریخ پذیرش : 1399/06/26
تاریخ انتشار : 1399/07/01
کلید واژه:
سبد بهینه سهام,
شبکه های عصبی پرسپترون چندلایه,
الگوریتم هوش جمعی سالپ,
چکیده مقاله :
ﻣﻬﻤﺘﺮﯾﻦ دﻏﺪﻏﻪ ﺳﺮﻣﺎﯾﻪﮔﺬاران، اﻓﺰاﯾﺶ ﻣﯿﺰان ﺳﻮد و ﮐﺎﻫﺶ رﯾﺴﮏ درﺑﻮرس ﺑﻮده و ﻫﻤﻮاره ﺑﻪ دﻧﺒﺎل راهکاری جهت ﺑﻬﺘﺮﯾﻦ ﭘﯿﺸﻨﻬﺎد در ﺧﺮﯾﺪ ﺳﻬﺎم هستند، تا ﺑﯿﺸﺘﺮﯾﻦ سود ﺳﺮﻣﺎﯾﻪﮔﺬاری را ﺑﺎﺷﺪ. در تحقیقات اﻧﺠﺎم ﺷﺪه مشاهده می شود که ﻣﺪل رﯾﺎﺿﯽ ﻣﯿﺎﻧﮕﯿﻦ وارﯾﺎﻧﺲ ﻣﺎرﮐﻮﯾﺘﺰ ﯾﮑﯽ از اﺻﻠﯽﺗﺮﯾﻦ راهکارها است اما ﺑﻬﺘﺮ اﺳﺖ ﻣﻌﯿﺎرﻫﺎیی همچون ﭼﻮﻟﮕﯽ با در نظر گرفتن ﭘﺘﺎﻧﺴﯿﻞ آینده ﺳﻬﺎم مورد بررسی قرار گیرد. در اﯾﻦ ﺗﺤﻘﯿﻖ از 20 ﺷﺮﮐﺖ اول از 50 ﺷﺮﮐﺖ ﺑﺮﺗﺮ ﺳﻪ ﻣﺎﻫﻪ اول سال 2019 اﻋﻼم ﺷﺪه ﺗﻮﺳﻂ ﺷﺮﮐﺖ ﺑﻮرس ﺑﻪ ﻋﻨﻮان ﻧﻤﻮﻧﻪ اﺳﺘﻔﺎده ﺷﺪه اﺳﺖ. همچنین اﯾﻦ ﭘﮋوﻫﺶ ﺑﻪ دﻧﺒﺎل اراﺋﻪ مدلی است که در آن پتانسیل آینده سهام ، توسط شبکه عصبی پرسپترون چندلایه با چندسناریو مختلف از جمله پیش بینی از روش خود سری زمانی قیمت سهام و یا پیش بینی با تاثیر عوامل موثر در تغییرات قیمت سهام، پیش بینی می شود. ﺳﭙﺲ، اﯾﻦ ﻣﺪلﻫﺎی بهینه سازی ﺑﺎ اﺳﺘﻔﺎده از اﻟﮕﻮرﯾﺘﻢ هوش جمعی سالپ که از الگوریتم های نوظهور و با قدرت همگرایی بالا است، ﺣﻞ ﻣﯽﮔﺮدد. ﻧﺘﺎﯾﺞ ﺗﺤﻘﯿﻖ ﺑﯿﺎﻧﮕﺮ آن اﺳﺖ ﮐﻪ ﻣﺪلﻫﺎی اراﺋﻪ ﺷﺪه در اﯾﻦ ﻣﻘﺎﻟﻪ، در ﻣﻘﺎﯾﺴﻪ ﺑﺎ روشﻫﺎی ﺳﻨﺘﯽ و ﺷﺎﺧﺺ ﺑﺎزار، ﺑﺎزدﻫﯽ ﺑﺎﻻﺗﺮی را برای سرمایه گذاران فراهم می نماید.
چکیده انگلیسی:
The most important courses are the ones that are taught and the one that is taught and the ones that are taught are the ones that work for each other, in order to make the most profit.In our research, it can be seen that all sorts of solutions are one of the solutions, but the concept of skewness should be considered in the future as well. In the first twenty-first of the first fifty years of 2019, the stock market is given as an example..Evolution is also a model in which the future potential of stocks is predicted by the multilayer perceptron neural network with several scenarios, including the prediction of the stock price time series method itself or the prediction of the impact of factors influencing stock price changes. The results show that the models presented in this article, compared to traditional methods, provide investors with and achieve the optimal formation of the portfolio by selecting the appropriate shares of companies.
منابع و مأخذ:
فر نگار,محمدپورزرندی محمدابراهیم.(1398) ستفاده از الگوریتم ترکیبی سری های زمانی فازی برای پیش بینی قیمت سهام و مقایسه آن با قیمت های سهام محاسبه شده با الگوریتم نسبت طلایی در شرکت های پذیرفته شده بورس تهران ، فصلنامه مهندسی مالی و مدیریت اوراق بهادار. شماره سی و هشتم ، ص42-
جعفر باباجانی محمدرضا تقوا قاسم بولو محسن عبداللهی.(1398) ﭘﯿﺶﺑﯿﻨﯽ ﺑﺎزده ﺳﻬﺎم در ﺑﻮرس اوراق ﺑﻬﺎدار ﺗﻬﺮان: ﻣﺪل ﺷﺒﮑﻪﻫﺎی ﻋﺼﺒﯽ ﻣﺼﻨﻮﻋﯽ و ﻣﺪل ﭼﻨﺪ ﻋﺎﻣﻠﯽ، راهبرد مدیریت مالی سال هفتم ، ص. .150-132
سید حسین میرعلوی، زهرا پورزمانی، آزیتا جهانشاد.(1398) ارائه مدلی مبتنی بر رفتار مالی سرمایه گذاران جهت پیش بینی قیمت سهام با استفاده از روش های فرا ابتکاری شبکه های عصبی ، بورس اوراق بهادار سال دوازدهم ،پاییز ، شماره ۴۷ ، ص 76-109
احمدخان بیگی، سهیل؛ عبدالوند، ندا؛. .(1396) پیش بینی قیمت سهام با رویکرد ترکیبی شبکه عصبی مصنوعی و الگوریتم رقابت استعماری مبتنی بر تئوری آشوب. راهبرد مدیریت مالی » پاییز - شماره 18 ، ص. 27-44.
فقیهی نژاد، محمد تقی؛ مینایی، بهروز.(1397) پیشبینی رفتار بازار سهام بر اساس شبکههای عصبی مصنوعی با رویکرد یادگیری جمعی هوشمند ، مدیریت صنعتی(دانشگاه تهران) » دوره دهم - شماره 2 ، ص27-39.
زارعی، قاسم؛ محمدیان، رعنا؛ حاضری نیری، هاتف؛ باشکوه اجیرلو، محمد؛.(1397) مقایسه روشهای شبکه عصبی فازی با شبکه عصبی موجک فازی در پیشبینی قیمت سهام بانکهای پذیرفتهشده در بورس اوراق بهادار تهران ، راهبرد مدیریت مالی » پاییز - شماره 22 ، ص. .33-52
تارا سیف زاده. دانیال اسدی صمدی .(1399) ارائه یک سیستم خبره پیش بینی قیمت سهام در بورس مبتنی بر شبکه عصبی فازی ، پنجمین کنفرانس ملی مهندسی کامپیوتر و بلاک چین ایران ، ص1-16.
سجاد نقدی؛ دکتر محمد عرب مازار یزدی.(1396). ترکیب شبکه عصبی، الگوریتم ژنتیک و الگوریتم تجمع ذرات در پیشبینی سود هر سهم.مجله علمی دانش حسابداری دوره 8، شماره 3 ، پاییز ، ص 7-34.
وطن پرست، محمدرضا؛ اسدی، مسعود؛ محمدی، شعبان؛ بابایی، عباس.(1398). پیش بینی قیمت سهام بر اساس شبکه عصبی LM-BP و برآورد نقطه بیش از حد توسط شمارش فواصل زمانی: شواهدی از بورس اوراق بهادار. مهندسی مالی و مدیریت اوراق بهادار » - شماره 39 . ص 11-25.
سید حسین میرعلوی، زهرا پورزمانی (1398). ارائه مدلی جهت پیش بینی قیمت سهام با استفاده از روش های فرا ابتکاری و شبکه های عصبی. مهندسی مالی و مدیریت اوراق بهادار، دوره: 10، شماره: 40.ص 22-35.
GM Caporale, FM Ali, F Spagnolo.(2017). International portfolio flows and exchange rate volatility in emerging Asian markets.Journal of International Money and Finance.pp 1-15.
N Trabelsi, G Gozgor, AK Tiwari.(2018). Effects of Price of Gold on Bombay Stock Exchange Sectoral Indices: New Evidence for Portfolio Risk Management. Research in International Business and Finance.pp.43-52.
R Bruni, F Cesarone, A Scozzari, F Tardella.(2017). On exact and approximate stochastic dominance strategies for portfolio selection. European Journal of Operational Research.pp 1-8.
J Zhai, M Bai.(2017). Mean-risk model for uncertain portfolio selection with background risk. Journal of Computational and Applied Mathematics.pp 11-15.
V Dixit, MK Tiwari.(2020). Project portfolio selection and scheduling optimization based on risk measure: a conditional value at risk approach. Annals of Operations Research.pp 15-24.
J Zhai, M Bai, H Wu.(2018). Mean-risk-skewness models for portfolio optimization based on uncertain measure. pp47-53.
W Chen, Y Wang, P Gupta, MK Mehlawat.(2018). A novel hybrid heuristic algorithm for a new uncertain mean-variance-skewness portfolio selection model with real constraints. Applied Intelligence.pp 24-31.
X Lu, Q Liu, F Xue.(2019). Unique closed-form solutions of portfolio selection subject to mean-skewness-normalization constraints. Operations Research Perspectives.pp 78-82.
B Chen, J Zhong, Y Chen.(2020). A hybrid approach for portfolio selection with higher-order moments: Empirical evidence from Shanghai Stock Exchange. Expert Systems with Applications.pp 54-61.
X Huang, H Di.(2020). Uncertain portfolio selection with mental accounts. International Journal of Systems Science.pp 1-15.
H Khalifa.(2019). A study on investment problem in chaos environment. Journal of Applied Research on Industrial Engineering,pp 1-8.
R Sweetman, K Conboy.(2019). Finding the Edge of Chaos: A Complex Adaptive Systems Approach to Information Systems Project Portfolio Management. Annals of Operations Research .pp 11-18.
W Chen, SS Li, J Zhang, MK Mehlawat.(2020). A comprehensive model for fuzzy multi-objective portfolio selection based on DEA cross-efficiency model. Soft Computing.pp 55-61.
D Abbasi, M Ashrafi, SH Ghodsypour.(2020). A multi objective-BSC model for new product development project portfolio selection. Expert Systems with Applications.pp 61-72.
GHM Mendonça, FGDC Ferreira, RTN Cardoso.(2020). Multi-attribute Decision Making Applied to Financial Portfolio Optimization Problem. Expert Systems with Applications.pp 11-19.
YT Chen, HQ Yang.(2020). Multi-period mean-variance portfolio selection with practical constraints using heuristic genetic algorithms. International Journal of Computational.pp 11-16.
S Dutta, MP Biswal, S Acharya, R Mishra.(2018). Fuzzy stochastic price scenario based portfolio selection and its application to BSE using genetic algorithm. Applied Soft Computing.pp 24-29.
H Nayebpur, MN Bokaei.(2017). Portfolio selection with fuzzy synthetic evaluation and genetic algorithm. Engineering Computations.pp 56-62.
EH Mostafa, EH Mohammed.(2016). Minimization of value at risk of financial assets portfolio using genetic algorithms and neural networks. Journal of Applied Finance & Banking.pp 111-121.
NR Sabar, A Turky, M Leenders, A Song.(2018). Multi-population genetic algorithm for cardinality constrained portfolio selection problems. International Conference on Computational Science.pp 101-123.
SK Mittal, N Srivastava.(2020). Gated neural network based Mean-EVaR-skewness Portfolio Optimization under uncertain environment. Journal of Circuits, Systems and Computers.pp1-15.
H Langlois.(2020). Measuring skewness premia. Journal of Financial Economics.pp101-125.
Z Landsman, U Makov, T Shushi.(2019). Analytic solution to the portfolio optimization problem in a mean-variance-skewness model. The European Journal of Finance.pp211-225.
OI Rogach, PV Dziuba, OI Shnyrkov.(2019). Skewness-based portfolio selection: Implications for international investing in frontier markets. Transition Studies Review.pp1-25.
X Lu, Q Liu, F Xue.(2019). Unique closed-form solutions of portfolio selection subject to mean-skewness-normalization constraints. Operations Research Perspectives.pp41-52.
E Ramos-Pérez, PJ Alonso-González.(2020). Stochastic reserving with a stacked model based on a hybridized Artificial Neural Network. Expert Systems with Applications.pp 11-24.
A Mahmoudi, L Hashemi, M Jasemi.(2020). A comparison on particle swarm optimization and genetic algorithm performances in deriving the efficient frontier of stocks portfolios based on a mean‐lower partial moment model. International Business and Finance.pp99-109.
Hamid Rahimi .(2019).Considering Factors Affecting the Prediction of Time Series by Improving Sine-Cosine Algorithm for Selecting the Best Samples in Neural. Fundamental Research in Electrical Engineering.pp 1-16.
Network Multiple Training Model Markowitz, Harry Max (1952). Portfolio Selection, The Journal of Finance, Volume 7, Issue 1, March, pp 77-91.
Samuelson, Paul A. (1970). The fundamental approximation theorem of portfolio analysis in
terms of means, variances, and higher moments, Review of Economic Studies. Volume 37,
Issue 4, October, pp 537–542.
VD Vasiani, BD Handari.(2020). Stock portfolio optimization using priority index and genetic algorithm. Journal of Physics: Conference Series.pp 51-62.
T Morris, J Comeau.(2020). Portfolio creation using artificial neural networks and classification probabilities: a Canadian study. Financial Markets and Portfolio Management.pp 14-19.
H Faris, S Mirjalili, I Aljarah, M Mafarja.(2020). Salp swarm algorithm: theory, literature review, and application in extreme learning machines.
YT Chen, HQ Yang.(2020). Multi-period mean-variance portfolio selection with practical constraints using heuristic genetic algorithms. International Journal of Computational.pp 1-14.
A Thakkar, K Chaudhari.(2020). A comprehensive survey on portfolio optimization, stock price and trend prediction using particle swarm optimization. Archives of Computational Methods in Engineering.pp 111-120
MA Rezani, GF Hertono, BD Handari.(2020). Implementation of iterative k-means-+ and ant colony optimization (ACO) in portfolio optimization problem. AIP Conference Proceedings.pp 54-63.
Y Deng, H Xu, J Wu.(2020). Optimization of blockchain investment portfolio under artificial bee colony algorithm. Journal of Computational and Applied Mathematics.pp 84-91.
QH Zhai, T Ye, MX Huang, SL Feng, H Li.(). Whale Optimization Algorithm for Multiconstraint Second-Order Stochastic Dominance Portfolio Optimization. Computational Intelligence and Neuroscience.pp 111-121.
Strumberger, E Tuba, N Bacanin, M Tuba.(2020). Modified Moth Search Algorithm for Portfolio OptimizatioSmart Innovation, Systems and Technologies. Pp 978-981.
_||_
GM Caporale, FM Ali, F Spagnolo.(2017). International portfolio flows and exchange rate volatility in emerging Asian markets.Journal of International Money and Finance.pp 1-15.
N Trabelsi, G Gozgor, AK Tiwari.(2018). Effects of Price of Gold on Bombay Stock Exchange Sectoral Indices: New Evidence for Portfolio Risk Management. Research in International Business and Finance.pp.43-52.
R Bruni, F Cesarone, A Scozzari, F Tardella.(2017). On exact and approximate stochastic dominance strategies for portfolio selection. European Journal of Operational Research.pp 1-8.
J Zhai, M Bai.(2017). Mean-risk model for uncertain portfolio selection with background risk. Journal of Computational and Applied Mathematics.pp 11-15.
V Dixit, MK Tiwari.(2020). Project portfolio selection and scheduling optimization based on risk measure: a conditional value at risk approach. Annals of Operations Research.pp 15-24.
J Zhai, M Bai, H Wu.(2018). Mean-risk-skewness models for portfolio optimization based on uncertain measure. pp47-53.
W Chen, Y Wang, P Gupta, MK Mehlawat.(2018). A novel hybrid heuristic algorithm for a new uncertain mean-variance-skewness portfolio selection model with real constraints. Applied Intelligence.pp 24-31.
X Lu, Q Liu, F Xue.(2019). Unique closed-form solutions of portfolio selection subject to mean-skewness-normalization constraints. Operations Research Perspectives.pp 78-82.
B Chen, J Zhong, Y Chen.(2020). A hybrid approach for portfolio selection with higher-order moments: Empirical evidence from Shanghai Stock Exchange. Expert Systems with Applications.pp 54-61.
X Huang, H Di.(2020). Uncertain portfolio selection with mental accounts. International Journal of Systems Science.pp 1-15.
H Khalifa.(2019). A study on investment problem in chaos environment. Journal of Applied Research on Industrial Engineering,pp 1-8.
R Sweetman, K Conboy.(2019). Finding the Edge of Chaos: A Complex Adaptive Systems Approach to Information Systems Project Portfolio Management. Annals of Operations Research .pp 11-18.
W Chen, SS Li, J Zhang, MK Mehlawat.(2020). A comprehensive model for fuzzy multi-objective portfolio selection based on DEA cross-efficiency model. Soft Computing.pp 55-61.
D Abbasi, M Ashrafi, SH Ghodsypour.(2020). A multi objective-BSC model for new product development project portfolio selection. Expert Systems with Applications.pp 61-72.
GHM Mendonça, FGDC Ferreira, RTN Cardoso.(2020). Multi-attribute Decision Making Applied to Financial Portfolio Optimization Problem. Expert Systems with Applications.pp 11-19.
YT Chen, HQ Yang.(2020). Multi-period mean-variance portfolio selection with practical constraints using heuristic genetic algorithms. International Journal of Computational.pp 11-16.
S Dutta, MP Biswal, S Acharya, R Mishra.(2018). Fuzzy stochastic price scenario based portfolio selection and its application to BSE using genetic algorithm. Applied Soft Computing.pp 24-29.
H Nayebpur, MN Bokaei.(2017). Portfolio selection with fuzzy synthetic evaluation and genetic algorithm. Engineering Computations.pp 56-62.
EH Mostafa, EH Mohammed.(2016). Minimization of value at risk of financial assets portfolio using genetic algorithms and neural networks. Journal of Applied Finance & Banking.pp 111-121.
NR Sabar, A Turky, M Leenders, A Song.(2018). Multi-population genetic algorithm for cardinality constrained portfolio selection problems. International Conference on Computational Science.pp 101-123.
SK Mittal, N Srivastava.(2020). Gated neural network based Mean-EVaR-skewness Portfolio Optimization under uncertain environment. Journal of Circuits, Systems and Computers.pp1-15.
H Langlois.(2020). Measuring skewness premia. Journal of Financial Economics.pp101-125.
Z Landsman, U Makov, T Shushi.(2019). Analytic solution to the portfolio optimization problem in a mean-variance-skewness model. The European Journal of Finance.pp211-225.
OI Rogach, PV Dziuba, OI Shnyrkov.(2019). Skewness-based portfolio selection: Implications for international investing in frontier markets. Transition Studies Review.pp1-25.
X Lu, Q Liu, F Xue.(2019). Unique closed-form solutions of portfolio selection subject to mean-skewness-normalization constraints. Operations Research Perspectives.pp41-52.
E Ramos-Pérez, PJ Alonso-González.(2020). Stochastic reserving with a stacked model based on a hybridized Artificial Neural Network. Expert Systems with Applications.pp 11-24.
A Mahmoudi, L Hashemi, M Jasemi.(2020). A comparison on particle swarm optimization and genetic algorithm performances in deriving the efficient frontier of stocks portfolios based on a mean‐lower partial moment model. International Business and Finance.pp99-109.
Hamid Rahimi .(2019).Considering Factors Affecting the Prediction of Time Series by Improving Sine-Cosine Algorithm for Selecting the Best Samples in Neural. Fundamental Research in Electrical Engineering.pp 1-16.
Network Multiple Training Model Markowitz, Harry Max (1952). Portfolio Selection, The Journal of Finance, Volume 7, Issue 1, March, pp 77-91.
Samuelson, Paul A. (1970). The fundamental approximation theorem of portfolio analysis in
terms of means, variances, and higher moments, Review of Economic Studies. Volume 37,
Issue 4, October, pp 537–542.
VD Vasiani, BD Handari.(2020). Stock portfolio optimization using priority index and genetic algorithm. Journal of Physics: Conference Series.pp 51-62.
T Morris, J Comeau.(2020). Portfolio creation using artificial neural networks and classification probabilities: a Canadian study. Financial Markets and Portfolio Management.pp 14-19.
H Faris, S Mirjalili, I Aljarah, M Mafarja.(2020). Salp swarm algorithm: theory, literature review, and application in extreme learning machines.
YT Chen, HQ Yang.(2020). Multi-period mean-variance portfolio selection with practical constraints using heuristic genetic algorithms. International Journal of Computational.pp 1-14.
A Thakkar, K Chaudhari.(2020). A comprehensive survey on portfolio optimization, stock price and trend prediction using particle swarm optimization. Archives of Computational Methods in Engineering.pp 111-120
MA Rezani, GF Hertono, BD Handari.(2020). Implementation of iterative k-means-+ and ant colony optimization (ACO) in portfolio optimization problem. AIP Conference Proceedings.pp 54-63.
Y Deng, H Xu, J Wu.(2020). Optimization of blockchain investment portfolio under artificial bee colony algorithm. Journal of Computational and Applied Mathematics.pp 84-91.
QH Zhai, T Ye, MX Huang, SL Feng, H Li.(). Whale Optimization Algorithm for Multiconstraint Second-Order Stochastic Dominance Portfolio Optimization. Computational Intelligence and Neuroscience.pp 111-121.
Strumberger, E Tuba, N Bacanin, M Tuba.(2020). Modified Moth Search Algorithm for Portfolio OptimizatioSmart Innovation, Systems and Technologies. Pp 978-981.
Farnegar, Mohammad Pourzarandi Mohammad Ebrahim. (2018) Use of fuzzy time series combined algorithm to predict stock prices and compare it with stock prices calculated with the golden ratio algorithm in companies listed on Tehran Stock Exchange, Financial Engineering and Management Quarterly. important papers, worthy documents. No. 38, pp. 42-64.
Jafar Babajani Mohammadreza Taqwa Qasim Bolo Mohsen Abdullahi. (2018) Stock return forecasting in Tehran Stock Exchange: artificial neural network model and multi-factor model, financial management strategy 7th year, p. .150-132
Seyed Hossein Miralavi, Zahra Pourzmani, Azita Jahanshad. (2018) Presenting a model based on the financial behavior of investors to predict stock prices using meta-innovative methods of neural networks, Stock Exchange, 12th year, Fall, No. 47. pp. 76-109
Ahmad Khan Begi, Sohail; Abdulvand, Neda;. (2016) stock price forecasting with the combined approach of artificial neural network and colonial competition algorithm based on chaos theory. Financial management strategy » Autumn - No. 18, p. 27-44.
Faqihi Nejad, Mohammad Taghi; Minaei, Behrouz. (2017) Prediction of stock market behavior based on artificial neural networks with intelligent collective learning approach, Industrial Management (Tehran University) » 10th period - number 2, pp. 27-39.
Zarei, Qasim; Mohammadian, Rana; Nairi Nairi, Hatef; Bashkoh Ajirlou, Mohammad; (2017) Comparison of fuzzy neural network methods with fuzzy wavelet neural network in forecasting the stock prices of banks listed on the Tehran Stock Exchange, Financial Management Strategy » Fall - No. 22, p. .33-52
Tara Saifzadeh. Daniyal Esadi Samadi. (2019) Presentation of an expert stock price forecasting system based on fuzzy neural network, 5th National Conference of Computer Engineering and Blockchain of Iran, pp. 1-16.
8- Sajjad Naqdi; Dr. Mohammad Arab Mazar Yazdi (2016). The combination of neural network, genetic algorithm and particle aggregation algorithm in predicting profit per share. Scientific Journal of Accounting Science, Volume 8, Number 3, Fall, pp. 34-7.
Vatanparast, Mohammad Reza; Asadi, Massoud; Mohammadi, Shaaban; Babaei, Abbas. (2018). Stock price forecasting based on LM-BP neural network and extreme point estimation by interval counting: evidence from stock exchange. Financial engineering and securities management" - No. 39. pp. 11-25.
- Seyed Hossein Miralavi, Zahra Pourzmani (2018). Presenting a model for stock price prediction using meta-heuristic methods and neural networks. Financial engineering and securities management, period: 10, number: 40. pp. 22-35.