مدیریتریسکنقدینگی در عملیات بازار باز بینبانکی با معیار GlueVaR
محورهای موضوعی : مهندسی مالیرسول خوش بین 1 , فرزین رضایی 2 , محمد علی رستگارسرخه 3
1 - گروه حسابداری، واحد قزوین، دانشگاه آزاد اسلامی ، قزوین، ایران
2 - گروه حسابداری ، واحد قزوین، دانشگاه آزاد اسلامی ، قزوین، ایران
3 - گروه مدیریت سیستم و بهره وری، دانشکده مهندسی صنایع و سیستمها، دانشگاه تربیت مدرس، تهران، ایران.
کلید واژه: مدیریتریسکنقدینگی, معیارGlueVaR, سامانههای نوینپرداخت بینبانکی, اشتهای ریسک, سپر نقدینگی و عملیات بازار باز (OMO),
چکیده مقاله :
با توجه به رایج شدن اعطای اعتبار بین بانکی در قبال اخذ وثیقه در راستای شروع عملیات بازار باز (OMO) در ایران و ضرورت هرچه بیشتر مدیریت ریسک نقدینگی در بانکها، در این تحقیق برای مدیریت ریسک نقدینگی در سامانههای پرداخت بین بانکی، از جامعه آماری دادههای روزانه سامانههای نوین پرداخت در صنعت بانکداری و نمونه آماری سری زمانی مجموع ماندههای دادههای روزانه سامانههای پرداخت یک بانک ایرانی از تاریخ 01/01/94 تا تاریخ 31/05/1398 استفادهشده است و مانایی سری زمانی با آزمونهای دیکی فولر و فیلیپس پرون بررسیشده است. سپس با توجه به ساختار دادهها و اینکه سری زمانی مجموع ماندههای سامانههای پرداخت نرمال نبودند از معیار GlueVaR که برای رفع نواقص دو معیار CVaR و VaR معرفیشده و ترکیب خطی از آنهاست، استفادهشده است. بر این اساس، جدول اشتهای ریسک نقدینگی با شش سناریو مختلف گزارششده است تا بانکها بر مبنای آن بتوانند سپری از داراییهای نقد شونده را متناسب با نگرش خود، ذخیره نمایند. نتایج نشان میدهد بهکارگیری معیار GlueVaR برای مدیریت ریسک نقدینگی، به دلیل بهکارگیری دو سطح اطمینان مختلف و دو معیار ارزش در معرض خطر و ریزش مورد انتظار، از انعطاف لازم برای نگرشهای متفاوت در مقابله با ریسک نقدینگی برخوردار است.
Due to the prevalence of granting interbank credit for collateral in order to start open market operations (OMO) in Iran and the need for more liquidity risk management in banks, in this study to manage liquidity risk in interbank payment systems, from the statistical community Daily Data of New Payment Systems in the Banking Industry and Statistical Sample of the Time Series The sum of the daily data balances of the payment systems of an Iranian bank from 01/01/94 to 05/31/1398 has been used. Then, according to the data structure and the fact that the time series were not the sums of the normal payment systems, the GlueVaR criterion was used, which was introduced to eliminate the shortcomings of the two CVaR and VaR criteria and is a linear combination of them. Accordingly, the Liquidity Risk appetite chart has been reported with six different scenarios so that banks can store the cash flow of liquid assets in proportion to their attitude. The results show using the GlueVaR criterion to manage liquidity risk, due to the use of two different levels of confidence and two metrics of risk and expected loss, has the necessary flexibility for different attitudes towards liquidity risk.
[1]. درگاهی حسین،انصاری رضا،بهبود مدلسازی شبکههای عصبی در پیشبینی نرخ ارز با بکارگیری شاخصهای تلاطم،تحقیقات اقتصادی، 1384 ،تابستان،شماره 69، صفحات 181-216
[2] سمنانی خطیب، هادینژاد، خشوعی رکسانا،مقایسه قدرت شبکه عصبی مصنوعی و شبکه عصبی پویا در پیشبینی نرخ ارز:کاربردی از تبدیل موجک، فصلنامه آینده پژوهی مدیریت، 1393،شماره 100،صفحه 35-49
[3] سینایی حسنعلی، مرتضوی سعیدالله،تیموری اصل یاسر، ،پیشبینی شاخص بورس اوراق بهادار با استفاده از شبکههای عصبی مصنوعی،بررسیهای حسابداری و حسابرسی،1384،شماره 41،صفحه 83-59
[4] . شریف مقدم، شفق ، هاشمی، سید ذبیحاله، پیشبینی نرخ ارز یورو به دلار با تکنیک شبکه عصبی مصنوعی، فصلنامه مهندسی مالی و مدیریت اوراق بهادار،1397، زمستان ،شماره سی و هفتم، صفحات 413-399
[5].حاجی غیاثیفر محمد حسین،نیکومرام هاشم، آسیبشناسی مکانیزم انجام معاملات در یازار ارز جهانی و ارائه مدل پیشنهادی بازار متشکل ارزی مبتنی بر واقعیت اقتصاد، مجله مهندسی مالی و مدیریت اوراق بهادار،1398،تابستان،شماره سی و نهم، صفحات 135-169
[6] طیبی، سید کمیل،معینی،شهرام،زمانی،زهرا،مدلسازی اجتناب ناپذیری زیان اکثر معاملاگران در بازار فارکس با استفاده از فرایند تصادفی، تحقیقات مدلسازی اقتصادی،1392،بهار، شماره 11،صفحات100-121
[7]. غفاری، مهدی و یوسفی، راحله، مدلسازی پیشبینی قیمت ارز با استفاده از شبکههای عصبی، مجله مهندسی مالی و مدیریت اوراق بهادار،1390 ، شماره هشتم، پاییز، صفحات 119-99
[8] مورفی، جان، تحلیل تکنیکال در بازار سرمایه، چاپ پانزدهم،تهران، نشر چالش، 1398
[9] .مهدی پور، علیرضا، الگوها و نمودارهای اسرار آمیز در بازارهای مالی، چاپ اول ،تهران، نشر آراد، 1398
[10]. Available data on https://www.investing.com
[11]Achchab, Said, Bencharef Omar (B), and Ouaarab Aziz , A Combination of Regression,Techniques and Cuckoo Search Algorithm for FOREX Speculation, Springer International Publishing AG 2017 ,Advances in Intelligent Systems and Computing ,p.225-237
[12]. Bank for International Settlements(BIS),Foreign exchange turnover in April 2019, Issue: 16.Sep.2019
[13] Bernardo J. de A., Rui Ferreira N., Nuno Horta, Combining Support Vector Machine with Genetic Algorithms to optimize investments in Forex markets with high leverage, Applied Soft Computing ,2018,64, pp. 596–613
[14]Brito ,R.F.B. de, Oliveira, A.L.I., Comparative study of forex trading systems built with SVR+GHSOM and genetic algorithms optimization of technical indicators, in: Proceedings of the 2012 24th IEEE International Conference on Tools with Artificial Intelligence, IEEE, 2012, pp. 351–358.
[15]Galeshchuk s, Mukherjee s,FOREX Trading Strategy Optimization,14th International Conference Computing and Artificial Intelligence,2018, pp 69-76
[16]Hirabayashi,. Aranha C,. Iba H, Optimization of the trading rule in foreign exchange using genetic algorithm, in: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (GECCO ’09), Montreal, Canada, New York USA : ACM, 2009, pp. 1529–1536.
[17]Kamruzzaman j,sarker r,ahmad e,SVM based models for predicting foreign currency exchange rates, Third IEEE International Conference,2003
[. [18] Macedo, Lobato ,Luís, Godinho, Pedro ·Alves, Maria João, A Comparative Study of Technical Trading Strategies Using a Genetic Algorithm, Springer Science+Business,2016,
[19]Lam Thu. B., Van Truong Vua,⁎, Thi Thu Huong Dinh, A novel evolutionary multi-objective ensemble learning approach for forecasting currency exchange rates, Data & Knowledge Engineering,2017
[20]. Sermpinis G.,. Stasinakis, C Theofilatos K., Karathanasopoulos A., Modeling, forecasting and trading the EUR exchange rates with hybrid rolling genetic algorithms – support vector regression forecast combinations, Eur. J. 2015, 247 (3) , pp.831–846.
[21] Shin, K.S., Lee, T.S., Kim, H.J. An application of support vector machinesin bankruptcy prediction model., Expert Systems with Applications, 2005,28(1),127-135.
_||_
[1]. Dargahi Hossein, Ansari Reza, Improvement of Neural Networks Modeling in Forecasting Exchange Rate Using Turbulence Indexes, Economic Research, 2014, Summer, No. 69, Pages 181-216
[2] Semnani Khatib, Hadi-Nejad, Roxana Khashoui, Comparison of the power of artificial neural network and dynamic neural network in forecasting exchange rates: an application of wavelet transformation, Future Management Research Quarterly, 2013, number 100, pages 35-49
[3] Sinaii Hasan-Ali, Mortazavi Saeedullah, Timuri Asal Yaser, Forecasting Stock Exchange Index Using Artificial Neural Networks, Accounting and Auditing Reviews, 2014, No. 41, Pages 59-83
[4] Sharif Moghadam, Shafaq, Hashemi, Seyyed Zabihalah, forecasting the euro to dollar exchange rate with artificial neural network technique, financial engineering and securities management quarterly, 2017, winter, number 37, pages 399-413
[5]. Haji Ghiashifar Mohammad Hossein, Nikumram Hashim, Pathology of the mechanism of doing transactions in the global currency exchange and presenting a proposed model of the currency market based on economic reality, Journal of Financial Engineering and Securities Management, 2018, Summer, Number 3 and IX, pages 135-169
[6] Tayibi, Seyed Kamil, Moeini, Shahram, Zamani, Zahra, Modeling the inevitability of the losses of most traders in the forex market using a stochastic process, Economic Modeling Research, 2013, Spring, No. 11, Pages 100-121
[7]. Ghafari, Mehdi and Yousefi, Rahela, currency price forecasting modeling using neural networks, Journal of Financial Engineering and Securities Management, 2018, No. 8, Autumn, pages 99-119
[8] Murphy, John, Technical analysis in the capital market, 15th edition, Tehran, Challenge Publishing, 2018
[9] Mehdipour, Alireza, mysterious patterns and charts in financial markets, first edition, Tehran, Arad Publishing House, 2018
[10]. Available data on https://www.investing.com
[11] Achchab, Said, Bencharef Omar (B), and Ouaarab Aziz, A Combination of Regression, Techniques and Cuckoo Search Algorithm for FOREX Speculation, Springer International Publishing AG 2017, Advances in Intelligent Systems and Computing, p.225-237
[12]. Bank for International Settlements (BIS), Foreign exchange turnover in April 2019, Issue: 16.Sep.2019
[13] Bernardo J. de A., Rui Ferreira N., Nuno Horta, Combining Support Vector Machine with Genetic Algorithms to optimize investments in Forex markets with high leverage, Applied Soft Computing, 2018, 64, pp. 596–613
[14] Brito, R.F.B. de, Oliveira, A.L.I., Comparative study of forex trading systems built with SVR+GHSOM and genetic algorithms optimization of technical indicators, in: Proceedings of the 2012 24th IEEE International Conference on Tools with Artificial Intelligence, IEEE, 2012, pp. 351–358.
[15] Galeshchuk s, Mukherjee s, FOREX Trading Strategy Optimization, 14th International Conference Computing and Artificial Intelligence, 2018, pp 69-76
[16] Hirabayashi, Aranha C,. Iba H, Optimization of the trading rule in foreign exchange using genetic algorithm, in: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (GECCO ’09), Montreal, Canada, New York USA: ACM, 2009, pp. 1529–1536.
[17] Kamruzzaman j, Sarker r, Ahmad e, SVM based models for predicting foreign currency exchange rates, Third IEEE International Conference, 2003
[. [18] Macedo, Lobato, Luís, Godinho, Pedro · Alves, Maria João, A Comparative Study of Technical Trading Strategies Using a Genetic Algorithm, Springer Science+Business, 2016,
[19] Lam Thu. B., Van Truong Vua, ⁎, Thi Thu Huong Dinh, A novel evolutionary multi-objective ensemble learning approach for forecasting currency exchange rates, Data & Knowledge Engineering, 2017
[20]. Sermpinis G. Stasinakis, C Theofilatos K., Karathanasopoulos A., Modeling, forecasting and trading the EUR exchange rates with hybrid rolling genetic algorithms – support vector regression forecast combinations, Eur. J. 2015, 247 (3), pp.831–846.
[21] Shin, K.S., Lee, T.S., Kim, H.J. An application of support vector machines in bankruptcy prediction model., Expert Systems with Applications, 2005, 28(1), 127-135.