ارائه مدل جامع جهت اندازهگیری ریسک نقدینگی بانکهای پذیرفتهشده در بورس اوراق بهادار تهران(مطالعه موردی: بانک ملت)
محورهای موضوعی : اقتصاد مالیتورج آذری 1 , مجتبی دستوری 2 , رضا تهرانی 3
1 - گروه مدیریت وحسابداری، واحدبین الملل کیش، دانشگاه آزاداسلامی،تهران،
2 - گروه مدیریت و حسابداری، واحدبین الملل کیش، دانشگاه آزاد اسلامی، کیش، ایران
3 - گروه مدیریت وحسابداری، واحدبین الملل کیش، دانشگاه آزاداسلامی،تهران،ایران
کلید واژه: صنعت بانکداری, شبکه عصبی مصنوعی, C45, G24, D83, C11, یادگیری ماشین, واژههای کلیدی: ریسک نقدینگی, شبکه بیزی. طبقه بندی JEL : G32,
چکیده مقاله :
چکیدهعدم مدیریت نقدینگی بانکها یکی از مهمترین ریسکهای هر بانک میباشد و کمتوجهی به ریسک نقدینگی منجر به عواقب جبرانناپذیر میشود. جلوگیری از وقوع ریسک نقدینگی نیازمند یک روش اندازهگیری جامع میباشد؛ اما ریسک نقدینگی موضوعی پیچیده است و این پیچیدگی ارائه یک تعریف مناسب را دشوار میسازد. علاوه بر این، تعریف فاکتورهای تعیینکننده ریسک نقدینگی و فرمولبندی تابع هدف مرتبط برای تقریب و پیشبینی مقدار آن پیچیده است. در این تحقیق برای مقابله با این مشکلات و ارزیابی ریسک نقدینگی و فاکتورهای کلیدی آن، مدلی را پیشنهاد میکنیم که از شبکههای عصبی مصنوعی و بیزی استفاده میکند. طراحی و اجرای این مدل شامل چندین الگوریتم و آزمایش جهت اعتبارسنجی است. در این مقاله از الگوریتمهای بهینهسازی لونبرگ-مارکوارت و ژنتیک جهت آموزش شبکه عصبی مصنوعی استفاده کردهایم. همچنین یک مطالعه موردی در بانک ملت برای نشان دادن قابلیت اجرا، کارایی، دقت و انعطافپذیری مدل اندازهگیری ریسک نقدینگی تحقیق، پیادهسازی کردهایم.
AbstractLack of liquidity management of banks is one of the most important risks for any bank and lack of attention to liquidity risk leads to irreparable consequences. Preventing liquidity risk requires a comprehensive measurement method but liquidity risk is complicated issue, and this complexity makes it difficult to provide a proper definition. In addition, defining liquidity risk determinants and formulation of the related objective function to measurement its value is a difficult task. To address these problems and assess liquidity risk and its key factors, in this study we propose a model that uses artificial neural networks and Bayesian networks. Design and implementation of this model includes several algorithms and experiments to validate the model. In this paper, we have used Levenberg-Marquardt and Genetic optimization algorithms to teach artificial neural networks. We have also implemented a case study in Bank Mellat to demonstrate the feasibility, efficiency, accuracy and flexibility of the research liquidity risk measurement model.
