مقایسه عملکردهای رشد، وضعیت تغذیه، بقاء و مقاومت در برابر استرس های محیطی در بچه ماهیان نورس کپور معمولی (Cyprinus carpio Linnaeus. 1758) با جیرههای غذایی مکمل سازی شده توسط دو پربیوتیک تجاری ایمکس و ایمکس اولترا
محورهای موضوعی : شیلاتمحمدرضا بیواره 1 , حجتالله جعفریان 2
1 - گروه شیلات، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبدکاووس، گلستان، ایران
2 - گروه شیلات، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبدکاووس، گلستان، ایران
کلید واژه: استرس, مقاومت, رشد, پربیوتیک, ایمکس,
چکیده مقاله :
مطالعه حاضر با هدف بررسی تأثیر دو پربیوتیک تجاری ایمکسو ایمکس اولترا بر عملکردهای رشد، کارایی تغذیه تغذیه و مقاومت در برابر استرسهای محیطی در بچه ماهیان نورس کپور معمولی (Cyprinus carpio) به مدت 60 روز انجام شده است. بدین منظور، تعداد 1080 قطعه بچه ماهی کپور معمولی با وزن اولیه (انحراف معیار± میانگین وزن) 304/0±3/1 گرم که از نظر ظاهری سالم به نظر میرسیدند تهیه و پس از سازگاری یک هفتهای با شرایط آزمایشگاه به شکل تصادفی در 9 تیمار آزمایشی و سه تکرار در 27 مخزن مدور از جنس پلی اتیلن (با تراکم 40 قطعه در هر تکرار) شامل سطوح صفر (شاهد) g/kg3/0، 5/0، 7/0 و 1 از هر پربیوتیک تقسیم شدند.در پایان آزمایش نتایج حاصل نشان داد پارامترهای رشد و کارایی تغذیه به شکل فوقالعادهای در تیمارهای حاوی پربیوتیک ایمکس به خصوص تیمار (g/kg1) A4 تفاوت معنیداری با سایر تیمارهای آزمایشی و گروه شاهد داشت (05/0P<). نتایج مشابهی درباره نرخ بقاء بچه ماهیان نیز مشاهده شد (05/0P<). ضمن آنکه تفاوت معنیداری بین تستهای مقاومت در برابر استرسهای محیطی در تیمارهای آزمایشی در مقایسه با گروه شاهد ثبت شد (05/0P<). با توجه به نتایج بهدستآمده پیشنهاد میشود، جیرههای غذایی با افزودنیهایتجاری ایمکس و ایمکس اولترا که باعث افزایش عملکردهای رشد، کارایی تغذیه و افزایش مقاومت در برابر استرسهای محیطی در بچه ماهیان نورس کپور معمولی شدهاند مکمل سازی شوند، اما مقایسه بین این دو محصول نشان داد کهپربیوتیک ایمکس بهخصوص در مقدار g/kg1در جیره غذایی بچه ماهیان نوررس کپور معمولی مؤثرتر است.
This study was carried out to compare the effect of two commercial prebiotics (A-Max concentrate and A-Max Ultra) on growth performance and resistance of common carpfry. This experiment was conducted in a completely random design with a total number of 1080 apparently healthy carp fry (initialaverage weight of 1.3±0.304 g), which were caught and transferred to the laboratory. After 7 days of adaptation to the laboratory conditions, the fish were randomly divided into 9 treatments in 27 polyethylene tank (40 carp fries per tank) in triplicates. The carp fries were fed with four concentrations of 0.3, 0.5, 0.7 and 1 g kg-1 prebiotics in-feed and the control was fed with diet without prebiotic supplementation, for 60 days. At the end of the study the results indicated that growth performance parameters and feed efficiency were highly significantly (p<0.05) different in probiotic A-max concentrate treatment, especially treatment A4 (1 g kg-1 prebiotic), in comparsion with other treatments and control group. The same trend was observed for survival rate (p<0.05). Similarly, significant differences were observed in resistance against environmental stresses in all treatments compared with control group (p>0.05). These results suggested that supplementing diets with commercial feed additives, A-Max concentrate and A-Max Ultra, promotes growth performance, feed efficiency and increased larvae resistance against the challenge tests compared with the control group, but the comparison between them showed that A- max concentrate was more superior at 1g kg-1 in common carp fry diets.
بیواره، م. ر. و جعفریان، ح. 1395. تعیین عملکرد پارامترهای رشد رشد، بازماندگی و مقاومت در برابر استرس های محیطی در لاروهای کپور معمولی F1(Cyprinus carpio) تغذیه شده با سطوح مختلف پربیوتیک Saccharomyces cerevisiae. فصلنامه علوم تکثیر و آبزی پروری، 14(10): 30-11.
رهنما، ب.، اکرمی، ر. و چیت ستز، ح. 1392. تاثیر پربیوتیک اینولین بر عملکرد رشد، بازماندگی، ترکیب لاشه و مقاومت در برابر استرس در ماهی قرمز حوض(Carassius auratus gibelio). فصلنامه علوم تکثیر و آیزی پروری، 1(2): 70-55.
Akrami, R., Razeghi Mansour, M., Chitsaz, H., Ghasempour Alamdar, O., Amani Denji, K. 2015a. Prebiotic (A-Max) and Growth of Juvenile Rainbow Trout (Oncorhynchus mykiss). Journal of Applied Aquaculture, 27(1):67-71. doi.org/10.1080/10454438.2015.1005479.
Akrami, R., Rahnama, B., Chitsaz, H. & Razeghi Mansour, M. 2015b.Effects of dietary inulin on growth performance, survival, body composition, stress resistance and some hematological parameters of Gibel carp juveniles (Carassius auratus gibelio). Iranian Journal of Fisheries Sciences, 14(4) 1072- 1082.
Bivareh, M.R., Jafaryan, H. & Jafaryan, S. 2015. The effect of A-Max (saccharomyces cerevisia culture concentrate) as a promoter for enhancement ofr growth and feeding oerformance of Common carp (Cyprinus carpio) fingerling.International conference onsustainable development, strategies and challenges with a focus on Agriculture, Natural Resources, Environment and Tourism, 24-26 Feb. Tabriz, Iran. 1-8. Available at: http://www.civilica.com/paper-ICDAT01-ICDAT01_275.html.
Bolu, S.A., Ojo, V., Oyeleke, B.A., Ajiboye, A.O., Baa Sambo, A. & Oluyemi, O. 2009. Effects of Alph-Amune G on the performance, blood chemistry and Histology of Broilers. International Journal Poultry Science, 8: 32-34.
Chen, Y., Zhu, X., Yang, Y., Han, D., Jin, J. & Xie, S. 2014. Effect of dietary chitosan on growthperformance, haematology, immune response, intestine morphology, intestinemicrobiota and disease resistance in gibel carp (Carassius auratus gibelio). Aquaculture.Nutrition, 20: 532–546.
Chitsaz, H., Akrami, R. & Arab Arkadeh, M. 2016. Effect of dietary synbiotics on growth, immune response and body composition of Caspian roach (Rutilus rutilus). Iranian Journal of Fisheries Sciences, 15, 170-182.
Cho, C.Y. 1992. Feeding system for rainbow trout and other salmonids with refrence to current estimates of energy and protein requirements. Aquaculture, 100:107-123.
Daniels, C. & Hoseinifar, S.H. 2014. Prebiotic applications in shellfish. In: D, M., Ringø, E. (Eds.), Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics. Wiley Blackwell Publishing. Oxford.
Dawood, M.A.O., Koshio, S., Ishikawa, M. & Yokoyama, S. 2015a. Interaction effects of dietary supplementation of heat-killed Lactobacillus plantarum and β-glucan on growth performance, digestibility and immune response of juvenile red sea bream, Pagrus major. Fish Shellfish Immunology, 45, 33–42.
Dawood, M.A.O., Koshio, S., Ishikawa, M. & Yokoyama, S. 2015b. Dietary supplementation of β-glucan improves growth performance, the innate immune response and stressresistance of red sea bream, Pagrus major. Aquaculture Nutrition, Available at: http://dx.doi.org/10.1111/ anu.12376.
De Silva, S.S., Gunasekora, R.M. & Atapattu, D. 1989. The dietary protein requirement of young tilapia and an evaluation often least cost dietary protein levels. Aquaculture, 80: 271-284.
Djauhari, R., Sukenda, W., Agus Suprayudi, M. & Zairin, M. J. 2017. Growth Performance and Health Status of Common Carp (Cyprinus carpio) Supplemented with Prebiotic from Sweet Potato (Ipomoea batatas L.) Extract. Pakistan Journal of Nutrition. 16: 155-163.
Duncan, D.B. 1995. Multiple range and multiple 'F' test. Biometrics, 11:1- 42.
Ebrahimi, G.H., Ouraji, H., Khalesi, M.K., Sudagar, M., Barari, A., Zarei Dangesaraki, M. & JaniKhalili, K.H. 2012. Effects of a prebiotic, Immunogen, on feed utilization, body composition,immunity and resistance to Aeromonas hydrophila infection in the commoncarp Cyprinus carpio (Linnaeus) fingerlings. Journal of Animal Physiology and Animal Nutrition, 96: 591–599.
Eshaghzadeh, H., Hoseinifar, S. H., Vahabzadeh, H. & Ringø, E. 2015. The effects of dietary inulinon growth performances, survival and digestive enzyme activities of commoncarp (Cyprinus carpio) fry. Aquaculture. Nutrition, 21: 242–247.
FAO. 2016. The State of World Fisheries and Aquaculture 1998. Food and Agriculture Organization FAO. Rome.
Ganguly, S., Dora, K.C., Sarkar, S. & Chowdhury, S. 2013. Supplementation of prebiotics in fish feed: A Review. Reviews inFish Biologyand Fisheries, 23: 195–199.
Ghorbani, A., Salamatdoustnobar, R., Seyaed Saied Ghaem Maghami, S.S. & Motallebi, V. 2012. The effect of different levels of prebiotic on the length of fingerling rainbow trout. African Journal of Biotechnology, 11(36): 8928-8931. DOI: 10.5897/AJB11.1905.
Hevroy, E.M., Espe M., Waagbo, R., Sandness, K., Rund, M. & Hemre, G.I. 2005. Nutrition utilization in Atlantic salmon (Salmo salar) fed increased level of fish protein hydrolysate during a period of fast growth. Aquaculture Nutrition, 11:301-313.
Hoseinifar, S. H., Soleimani, N. & Ringø, E. 2014. Effects of dietary fructo-oligosaccharide supplementation on the growthperformance, haemato-immunological parameters, gut microbiota and stress resistance of common carp (Cyprinus carpio) fry. British Journal of Nutrition, 112: 1296–1302. Doi:
10.1017/S0007114514002037.
Hoseinifar, S.H. & Mahious, A.S., 2007. Probiotics, prebiotics and Synbiotics in Aquaculture: Areview. Proceeding of International Training Course on fish Nutrition and disease, 5 September. Ghaemshahr, Iran.
Hoseinifar, S. H., Eshaghzadeh, H., Vahabzadeh, H. & Peykaran Mana, N. 2015. Modulationof growth performances, survival, digestive enzyme activities and intestinal microbiotain common carp (Cyprinus carpio) larvae using short chain fructooligosaccharide.Journal of Aquaculture Research & Development, Available at: http://dx.doi.org/ 10.1111/are. 12777.
Hoseinifar, S.H., Soleimani, N. & Ringø, E. 2014. Effects of dietary fructo-oligosaccharidesupplementation on the growth performance, haemato-immunological parameters,gut microbiota and stress resistance of common carp (Cyprinus carpio) fry.British Journal of Nutrition, 112: 1296–1302.
Hoseinifar, S. H., Mirvaghefi, A., Mojazi Amiri, B., Rostami, H. K. & Merrifield, D.L. 2011. The effects of oligofructose on growth performance, survival and autochthonous intestinal microbiota of beluga (Huso huso) juveniles. Aquaculture Nutrition, 17: 498-504.
Jafaryan, H., Azari-Takami, G., Kamali, A., Soltani, M. & Habibi-Rezaei, M.2007. The use of probiotic bacillusbioencapsulated with Artemia urmiananauplii for the growth and survival in Acipenser persicus larvae.Journal of Agricultural Sciences and Natural Resources, 14: 77-87.
Jafaryan, H., Soltani, M., Taati, M., Nazarpoor, A. & Morovat, R. 2011. The comparsion of performance of isolated sturgeon gut bacillus (Acipenser persicus and Huso huso) with commercial microbial products on growth and survival of rainbow trout (Oncorhynchus mykiss) larvae. Journal of Veterinary Research, 66(1): 39-46.
Kitao, T. & Yoshida, T. 1986. Effect of an immunopotentiator on Aeromonassalmonicida infection in rainbow trout. Veterinary Immunology and Immunopathology, 12:287-291.
Kühlwein, H., Merrifield, D.L., Rawling, M.D., Foey, A.D. & Davies, S.J. 2014. Effects of dietaryβ-(1, 3) (1, 6)-D-glucan supplementation on growth performance, intestinal morphologyand haemato-immunological profile of mirror carp (Cyprinus carpio L). Journal of Animal Physiology and Animal Nutrition, 98: 279–289.
Lashkarbolouki, M., Jafaryan, H., Keramat, A., Farhangi, M. & Adineh, H.2012. The effect of yeast-enriched (Saccharomyces cerevisiae) Daphnia magnaon growth and stress resistance in Persian sturgeon (Acipenser persicus) Larvae. Iranian Journal of Natural Resources, 64(4): 345-355.
Mahious, A.S. & Ollevier, F. 2005. Probiotics and Prebiotics in Aquaculture: Review. 1st
Regional Workshop on Techniques for Enrichment of Live Food for Use in Larviculture AAARC. Urmia, Iran.
Marteau, P. & Flourie, B. 2001. Tolerance to low-digestible carbohydrates: symptomatology and methods. British Journal of Nutrition, 85: 517-521.
Mohamadi-Azarrm, H., Abedian, A. & Abtahi, B. 2004. Effects of probiotic on growth and survival in rainbow trout (Oncorhynchus mykiss). Journal of Marine Science, 2-3: 69-75.
Ringø, E., Dimitroglou, A., Hoseinifar, S.H. & Davies, S.J. 2014. Prebiotics in finfish: an update.In: Merrifield, D.L., Ringø, E. (Eds.), Aquaculture Nutrition: Gut Health, Probiotics andPrebiotics.Wiley-Blackwell Publishing. Oxford, UK.
Ringø, E., Olsen, R.E., Gifstad, T.Ø., Dalmo, R.A., Amlund, H. & Hemre, G.I. 2010. Prebiotics in aquaculture: A Review. Aquaculture Nutrition, 16:117–136.
Ringo, E. & Vadstein, O. 1998. Colonization of Vibrio pelagius and Aeromonas caviae in early developing turbot, Scophtalmus maximus (L.) larvae. Journal of Applied Microbiologia, 84: 227-233.
Salze, G., McLean, E., Schwarz, M.H., Mclean, E. & Craig, S.R. 2008 Dietarymannan oligosaccharide enhances salinity toleranceand gut development of larval cobia. Aquaculture, 274:148–152.
Sang, H.M. & Fotedar, R. 2010. Effects of dietary β-1, 3-glucan on the growth, survival, physiological and immune response of marron, Cherax tenuimanus (smith, 1912). Fish and Shellfish Immunology, 28: 957-960.
Schley, P. & Field, C. 2002. The immune enhancing effects of dietary fibersand prebiotics. British Journal of Nutrition, 87(2): 221-230.
Soleimani, N., Hoseinifar, S.H., Merrifield, D., Barati, M. & Abadi, Z.H. 2012.Dietary supplementation of fructooligosaccharide (FOS)improves the innate immune response, stress resistance,digestive enzyme activities and growth performance ofCaspian roach (Rutilus rutilus) fry. Fish Shellfish Immunology,32: 316–321.
Staykov, Y., spring, P., Denev, S. & Sweetman, J. 2007. Effect of a mannan oligosaccharide on the growth performance and immune status of rainbow trout (Oncorhynchus mykiss). Aquaculture International, 15: 153–161.
Torrecillas, S., Montero, D. & Izquierdo, M. 2014. Improved health and growth of fish fedmannan oligosaccharides: potential mode of action. Fish Shellfish Immunology, 36: 525–544.
Wootton, R.J. 1990. Ecology of Teleost Fish. Chapman & Hall. London.
Wu, Z.Q., Jiang, C., Ling, F. & Wang, G.X. 2015. Effects of dietary supplementation ofintestinal autochthonous bacteria on the innate immunity and disease resistance ofgrass carp (Ctenopharyngodon idellus). Aquaculture, 438: 105–114.
Zaccorate, I., Gasco, L., Sicuro, B., Palmegiano, G. B. & Luzzana, U. 1996. Use of by-product frpm poultry slaughtering in rainbow trout (Oncorhynchus mykiss). Rivista Italiana diaquacoltura, 31: 145-156.
Zhou, Q., Li, K., Jun, X., Bo, L. 2009. Role and functions ofbeneficial microorganisms in sustainable aquaculture.Bioresource Technology,100: 3780–3786.
Zhu, G., Peng, Y., Li, B., Guo, J., Yang, Q. & Wang, S. 2008. Biological Removal of Nitrogen from Waste water. Review of Environmental Contaminant Toxicology, 192:159–195.
_||_