تهیه، شناسایی و بررسی فعالیت پادباکتری چندسازه های فیبری چندجزئی پلیاکریلونیتریل/چارچوب فلز-آلی نقره/نانوذره های کیتوسان/N-استیل¬سیستیئن
محورهای موضوعی : شیمی معدنیزینب انصاری اصل 1 , حدیث رشیدی کیا 2 , اسماعیل داراب پور 3
1 - دانشیار گروه شیمی، دانشگاه شهید چمران اهواز، اهواز، ایران.
2 - دانشجوی کارشناسی ارشد گروه شیمی، دانشگاه شهید چمران اهواز، اهواز، ایران.
3 - استادیار گروه زیست¬شناسی، دانشگاه شهید چمران اهواز، اهواز، ایران.
کلید واژه: چارچوب فلز-آلی, کیتوسان, N-استیل¬سیستئین, پلی¬اکریلونیتریل, چندسازه, فعالیت پادباکتری.,
چکیده مقاله :
در این کار پژوهشی، چندسازههای فیبری با ویژگی پادباکتری شامل پلیاکریلونیتریل، نانوذرههای کیتوسان (CSNPs)، چارچوب فلز-آلی نقره و N-استیلسیستیئن (NAC) بهروش الکتروریسی تهیه شدند. فیبرهای تهیهشده با روشهای طیفسنجی فروسرخ تبدیل فوریه (FTIR)، پراش پرتو ایکس (XRD)، میکروسکوپی الکترونی روبشی (SEM) و نگاشت عنصری شناسایی شدند. نتیجههای بهدستآمده از بررسی ویژگی پادباکتری ترکیبهای تهیهشده در برابر باکتریهای گرم منفی اشریشیا کلی و گرم مثبت استافیلوکوکوس اورئوس نشان داد افزودن چارچوب فلز-آلی نقره و همچنین، ترکیبهای پادباکتری کیتوسان و NAC منجر به بهبود ویژگی پادباکتری فیبرها شدند؛ بهگونهایکه نانوفیبر PAN/0.5%Ag-MOF/10%CSNPs/5%NAC بیشترین اثر را در کاهش تعداد سلولهای اشریشیا کلی و استافیلوکوکوس اورئوس نشان داد. ازاینرو، میتوان گفت این ترکیبها قابلیت کاربرد در زمینههای پزشکی مانند استفاده بهعنوان زخمپوش را دارند.
In this research, fibrous composites with antibacterial activities including polyacrylonitrile (PAN), chitosan nanoparticles (CSNPs), silver metal-organic framework, and N-acetylcysteine (NAC) were prepared by electrospinning method. The prepared fibers were studied using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and elemental mapping using energy-dispersive X-ray spectroscopy (EDS). The obtained results of the antibacterial studies against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) showed that the addition of silver metal-organic framework as well as the antibacterial compounds such as CSNPs and NAC led to the improvement of the antibacterial properties of the fibers. Therefore, these compounds have the potential to be used in medical fields such as wound healing
[1] Cancio LC, Wolf SE. A History of Burn Care. In: Jeschke MG, Kamolz LP, Sjobrg F, Wolf SE, editors. Handbook of Burns Volume 1. New York: Springer; 2019. p. 3-17.
[2] Liu X, Xu H, Zhang M, Yu DG. Electrospun Medicated Nanofibers for Wound Healing: Review. Membranes. 2021;11(10):770. doi: 10.3390/membranes1110077
[3] Wang S, Yan F, Ren P, Li Y, Wu Q, Fang X, et al. Incorporation of metal-organic frameworks into electrospun chitosan/poly (vinyl alcohol) nanofibrous membrane with enhanced antibacterial activity for wound dressing application. International Journal of Biological Macromolecules. 2020;158:9-17. doi: 10.1016/j.ijbiomac.2020.04.116
[4] Ahmed R, Tariq M, Ali I, Asghar R, Noorunnisa Khanam P, Augustine R, et al. Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. International Journal of Biological Macromolecules. 2018;120:385-93. doi: 10.1016/j.ijbiomac.2018.08.057
[5] Terzopoulou A, Nicholas JD, Chen XZ, Nelson BJ, Pané S, Puigmartí-Luis J. Metal-Organic Frameworks in Motion. Chem Rev. 2020;120(20):11175-93. doi: 10.1021/acs.chemrev.0c00535
[6] Li R, Chen T, Pan X. Metal–Organic-Framework-Based Materials for Antimicrobial Applications. ACS Nano. 2021;15(3):3808-48. doi: 10.1021/acsnano.0c09617
[7] Mendiratta S, Usman M, Lu KL. Expanding the dimensions of metal–organic framework research towards dielectrics. Coordination Chemistry Reviews. 2018;360:77-91. doi: 10.1016/j.ccr.2018.01.005
[8] Samuel MS, Jose S, Selvarajan E, Mathimani T, Pugazhendhi A. Biosynthesized silver nanoparticles using Bacillus amyloliquefaciens; Application for cytotoxicity effect on A549 cell line and photocatalytic degradation of p-nitrophenol. Journal of Photochemistry and Photobiology B: Biology. 2020;202:111642. doi: 10.1016/j.jphotobiol.2019.111642
[9] Shanmuganathan R, Karuppusamy I, Saravanan M, Muthukumar H, Ponnuchamy K, Ramkumar VS, et al. Synthesis of Silver Nanoparticles and their Biomedical Applications - A Comprehensive Review. Current pharmaceutical design. 2019;25(24):2650-60. doi: 10.2174/1381612825666190708185506
[10] Berchel M, Gall TL, Denis C, Hir SL, Quentel F, Elléouet C, et al. A silver-based metal–organic framework material as a ‘reservoir’ of bactericidal metal ions. New Journal of Chemistry. 2011;35(5):1000-3. doi: 10.1039/C1NJ20202B
[11] Pastore VJ, Cook TR. Coordination-Driven Self-Assembly in Polymer–Inorganic Hybrid Materials. Chemistry of Materials. 2020;32(9):3680-700. doi: 10.1021/acs.chemmater.0c00851
[12] Han H, Yang J, Li X, Qi Y, Yang Z, Han Z, et al. Shining light on transition metal sulfides: New choices as highly efficient antibacterial agents. Nano Research. 2021;14(8):2512-34. doi: 10.1007/s12274-021-3293-3
[13] Zhang S, Ye J, Sun Y, Kang J, Liu J, Wang Y, et al. Electrospun fibrous mat based on silver (I) metal-organic frameworks-polylactic acid for bacterial killing and antibiotic-free wound dressing. Chemical Engineering Journal. 2020;390:124523. doi: 10.1016/j.cej.2020.124523
[14] Huang C, Xu X, Fu J, Yu D-G, Liu Y. Recent Progress in Electrospun Polyacrylonitrile Nanofiber-Based Wound Dressing. Polymers (Basel). 2022;14(16):3266. doi: 10.3390/polym14163266
[15] Anyaegbu CE, Zhang H, Xiao J, Tao M, Ma N, Zhang W. Tertiary amine-bisquaternary ammonium functionalized polyacrylonitrile fiber for catalytic synthesis of pyran-annulated heterocycles. Reactive and Functional Polymers. 2022;172:105201. doi: 10.1016/j.reactfunctpolym.2022.105201
[16] Ansari-Asl Z, Shahvali Z, Sacourbaravi R, Hoveizi E, Darabpour E. Cu(II) metal-organic framework@Polydimethylsiloxane nanocomposite sponges coated by chitosan for antibacterial and tissue engineering applications. Microporous and Mesoporous Materials. 2022;336:111866. doi: 10.1016/j.micromeso.2022.111866
[17] Gomez-Aparicio LS, Bernáldez-Sarabia J, Camacho-Villegas TA, Lugo-Fabres PH, Díaz-Martínez NE, Padilla-Camberos E, et al. Improvement of the wound healing properties of hydrogels with N-acetylcysteine through their modification with methacrylate-containing polymers. Biomaterials science. 2021;9(3):726-44. doi: 10.1039/d0bm01479f
[18] Chandrasekaran M, Kim KD, Chun SC. Antibacterial Activity of Chitosan Nanoparticles: A Review. Processes. 2020;8(9):1173. doi: 10.3390/pr8091173
[19] Zhang M, Wang G, Wang D, Zheng Y, Li Y, Meng W, et al. Ag@MOF-loaded chitosan nanoparticle and polyvinyl alcohol/sodium alginate/chitosan bilayer dressing for wound healing applications. Int J Biol Macromol. 2021;175:481-94. doi: 10.1016/j.ijbiomac.2021.02.045
[20] Sharma S, Khan IA, Ali I, Ali F, Kumar M, Kumar A, et al. Evaluation of the antimicrobial, antioxidant, and anti-inflammatory activities of hydroxychavicol for its potential use as an oral care agent. Antimicrobial agents and chemotherapy. 2009;53(1):216-22. doi: 10.1128/aac.00045-08
[21] Miao W, Wang J, Liu J, Zhang Y. Self-Cleaning and antibacterial zeolitic imidazolate framework coatings. Advanced Materials Interfaces. 2018;5(14):1800167. doi: 10.1002/admi.201800167
[22] Yuan Y, Zhang Y. Enhanced biomimic bactericidal surfaces by coating with positively-charged ZIF nano-dagger arrays. Nanomedicine: Nanotechnology, Biology and Medicine. 2017;13(7):2199-207. doi: 10.1016/j.nano.2017.06.003
[23] Li W, Yang Z, Zhang G, Fan Z, Meng Q, Shen C, et al. Stiff metal–organic framework–polyacrylonitrile hollow fiber composite membranes with high gas permeability. Journal of Materials Chemistry A. 2014;2(7):2110-8. doi: 10.1039/C3TA13781C
[24] Karbownik I, Rac-Rumijowska O, Fiedot-Toboła M, Rybicki T, Teterycz H. The preparation and characterization of polyacrylonitrile-polyaniline (PAN/PANI) fibers. Materials. 2019;12(4):664. doi: 10.3390/ma12040664
[25] Behl G, Iqbal J, O'Reilly NJ, McLoughlin P, Fitzhenry L. Synthesis and characterization of poly(2-hydroxyethylmethacrylate) contact lenses containing chitosan nanoparticles as an ocular delivery system for dexamethasone sodium phosphate. Pharmaceutical Research. 2016;33(7):1638-48. doi: 10.1007/s11095-016-1903-7
[26] Ercan UK, Smith J, Ji H-F, Brooks AD, Joshi SG. Chemical changes in nonthermal plasma-treated N-acetylcysteine (NAC) solution and their contribution to bacterial inactivation. Scientific Reports. 2016;6(1):20365. doi: 10.1038/srep20365
[27] Dang W, Liu J, Huang X, Liang J, Wang C, Miao P, et al. Effects of γ-Ray irradiation on the radial structure heterogeneity in polyacrylonitrile fibers during thermal stabilization. Polymers (Basel). 2018;10(9):943. doi: 10.3390/polym10090943
[28] Kuang Y, He H, Chen S, Wu J, Liu F. Adsorption behavior of CO2 on amine-functionalized polyacrylonitrile fiber. Adsorption. 2019;25(4):693-701. doi: 10.1007/s10450-019-00070-0
[29] Su Y, Hessou EP, Colombo E, Belletti G, Moussadik A, Lucas IT, et al. Crystalline structures of l-cysteine and l-cystine: A combined theoretical and experimental characterization. Amino Acids. 2022;54(8):1123-33. doi: 10.1007/s00726-022-03144-6
[30] Manoharan A, Das T, Whiteley GS, Glasbey T, Kriel FH, Manos J. The effect of N-acetylcysteine in a combined antibiofilm treatment against antibiotic-resistant Staphylococcus aureus. The Journal of antimicrobial chemotherapy. 2020;75(7):1787-98. doi: 10.1093/jac/dkaa093
[31] Guarnieri A, Triunfo M, Scieuzo C, Ianniciello D, Tafi E, Hahn T, et al. Antimicrobial properties of chitosan from different developmental stages of the bioconverter insect Hermetia illucens. Scientific Reports. 2022;12(1):8084. doi: 10.1038/s41598-022-12150-3