تهیه و شناسایی نانوذره¬های نیکل اکسید به¬عنوان کاتالیست برای واکنشهای آلدول نامتقارن
الما هاشم زاده
1
(
دانشجوی دکتری دانشکده شیمی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران.
)
فریبا تدین
2
(
دانشیار دانشکده شیمی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران.
)
مژگان الهیاری
3
(
استادیار مجتمع تحقیقات و تولید، انستیتو پاستور ایران، کرج، ایران.
)
کلید واژه: واکنش آلدول, کاتالیست ناهمگن, نانوذره¬های نیکل اکسید, طراحی مرکب مرکزی.,
چکیده مقاله :
واکنشهای تراکم آلدول ترکیبهای بتا-هیدروکسیکربونیل فعال نوری را تولید میکند که بهطورگسترده برای تولید واسطههای داروهای پادفشارخون و پادکنشگرهای کلسیم استفاده میشوند. در مطالعه حاضر، نانوذرههای نیکل اکسید بهعنوان یک کاتالیست کارآمد با روش سل-ژل برای واکنش آلدول سنتز شد. مشخصهیابی کاتالیست تهیه شده با میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM)، میکروسکوپ الکترونی عبوری (TEM) و پراش پرتو ایکس (XRD) انجام گرفت. کارایی کاتالیستی نانوذرههای نیکل اکسید در واکنش آلدول با یک روش سازگار با محیطزیست بررسی شد. بدین ترتیب که از نانوذرههای حاوی مرکز NiO بهعنوان اسید لوئیس در واکنشهای آلدول نامتقارن، استفاده شد و مشخص شد بازده فراوردههای آلدول مربوط، به مقدار چشمگیری افزایش مییابد. همچنین، کاتالیست موردنظر را با تخلیه مغناطیسی میتوان بازیافت کرد و از آن در واکنشهای متوالی بدون از دستدادن کارایی قابلتوجه استفاده کرد. حلالهای متفاوت ارزیابی شدند که از میان آنها، آب در دمای محیط بهترین بازده واکنش (۸۲ درصد) را نسبت به سایر حلالهای آلی داشت. روش سطحپاسخ برپایه طراحی مرکب مرکزی برای بهینهسازی عاملهای تجربی واکنش آلدول و همچنین، بررسی برهمکنش بین عاملها بهکارگرفته شد. بررسی نتیجهها نشان داد در دمای 25 درجه سلسیوس، مقدار کاتالیست 30 میلیمول و زمان تماس ۵ ساعت، بالاترین کارایی (مقدار واقعی: ۸۱ درصد، مقدار پیشبینی شده: ۹۴/۸۰ درصد) بهدست آمد. در مقایسه با سایر مطالعهها، نانوذرههای نیکل اکسید با آب بهعنوان یک حلال دوستدار محیطزیست در زمان کوتاهتری توانستند هیدروکسیکتونهایی با بازده بالا تولید کنند.
چکیده انگلیسی :
Aldol condensation reactions produce photoactive beta-hydroxycarbonyl compounds that are widely used to produce intermediates of antihypertensive drugs and calcium antagonists. In the present study, nickel oxide nanoparticles (NiO NPs) were synthesized as an efficient catalyst using sol-gel method for aldol reaction. The characterization of the synthesized nanocatalyst was assessed by scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The catalytic performance of nickel oxide nanoparticles in the aldol reaction was investigated using an environmentally friendly method. In this way, nanoparticles containing NiO center were used as a Lewis acid in asymmetric aldol reactions, and it was found that the yield of the corresponding aldol products increased significantly. Also, the desired catalyst can be recovered by magnetic discharge and used in successive reactions without significant loss of efficiency. Different solvents were evaluated, among them, water at ambient temperature had the best reaction efficiency (82%) compared to other organic solvents. Response surface methodology (RSM) based on central composite design (CCD) was used to optimize the experimental factors of aldol reaction and also to investigate the interaction between parameters. Examining the results showed that at a temperature of 25 °C, the amount of catalyst of 30 mmol, and the contact time of 5 h, the highest performance (actual value: 81%, predicted value: 80.94%) was obtained. Compared to other studies, NiO NPs with water as an environmentally friendly solvent were able to produce hydroxyketones with high efficiency in a shorter time
[1] Parejas A, Cosano D, Hidalgo-Carrillo J, Rafael Ruiz J, Marinas A, Jiménez-Sanchidrián C, Urbano FJ. Aldol condensation of furfural with acetone over Mg/Al mixed oxides. Influence of water and synthesis method. Catalysts. 2019;9: 203. doi: org/10.3390/catal9020203
[2] Zhang S., Deng ZQ. Copper-catalyzed retro-aldol reaction of β-hydroxy ketones or nitrile with aldehydes: Chemo- and stereoselective access to (E)-enones and (E)-acrylonitriles. Organic & Biomolecular Chemistry. 2016;14:7282-7294. doi: org/10.1039/C6OB01198E
[3] Lewis RJ. Hazardous chemical desk reference, 5th Edition. In: Organic Process Research & Development. New York: WileyInterscience; 2002;6:577. doi: org/10.1021/op020031
[4] Shao S, Ye Z, Hu X, Sun J, Li X, Zhang H. Solvent-free synthesis of jet fuel by aldol condensation and hydroprocessing of cyclopentanone as biomass-derivates. Journal of Cleaner Production. 2020;350:119459. doi: org/10.1016/j.jclepro.2019.119459
[5] Pan W, Zhai J, Yang H, Li T, Lu X, Wang Z, Yin Y. One-pot synthesis of 3-aryliden-2,3-dihydro-4-quinolones from o-anilinopropargyl alcohols via aldol condensation of in situ generated 2,3-dihydroquinolin-4-ones and aryl aldehydes. Asian Journal of Organic Chemistry. 2022;11:275-280. doi: org/10.1002/ajoc.202100760
[6] Zhao X, Li S, Hu Y, Zhang X, Chen L, Wang C, Ma L, Zhang Q. Synthesis of long chain alkanes via aldol condensation over modified chitosan catalyst and subsequent hydrodeoxygenation. Chemical Engineering Journal. 2022;428:131368. doi: org/10.1016/j.cej.2021.131368
[7] Al-Auda Z, Al-Atabi H, Hohn KL. Metals on ZrO2: Catalysts for the aldol condensation of methyl ethyl ketone (MEK) to C8 ketones. Catalysts. 2018;8:622. doi: org/10.3390/catal8120622
[8] Kumar Karmee S, Hanefeld U. Ionic liquid catalysed synthesis of -hydroxy ketones. ChemSusChem. 2011;4:1118–1123. doi: org/10.1002/cssc.201100083
[9] Joly S, Nair MS. Studies on the enzymatic kinetic resolution of β-hydroxy ketones. Journal of Molecular Catalysis B: Enzymatic. 2003;22:151–160. doi: org/10.1016/S1381-1177(03)00027-4
[10] Kooti M, Kooshki F, Nasiri E, Preparation and characterization of magnetic graphene nanocomposite containing Cu(proline)2 as catalyst for asymmetric aldol reactions. Research on Chemical Intermediates. 2019;45:2641–2656. doi: org/10.1007/s11164-019-03755-x
[11] Dumbre D, Choudhary VR. Chapter 3-Properties of functional solid catalysts and their characterization using various analytical techniques. In: Hussain CM, Sudarsanam P, editors. Advanced functional solid catalysts for biomass valorization. Amsterdam: Elsevior; 2020.p.77-88. doi: org/10.1016/B978-0-12-820236-4.00003-9
[12] Abu-Dief AM, Mahdy Abdel-Fatah S. Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis. Beni-Suef University Journal of Basic and Applied Sciences. 2018;7:55–67. doi: org/10.1016/j.bjbas.2017.05.008
[13] Mandal S, Mandal S, Ghosh S.K, Ghosh A, Saha R, Banerjee S, Saha B. A Review on aldol reaction. Synthetic Communications. 2016;46:1327-1342. doi: org/10.1080/00397911.2016.1206938
[14] Dubnova L, Smolakova L, Kikhtyanin O, Kocık J, Kubicka D, Zvolska M, Pouzar M, Capek L, The role of ZnO in the catalytic behaviour of Zn-Al mixed oxides in aldol condensation of furfural with acetone. Catalysis Today. 2021;379:181-191. doi: org/10.1016/j.cattod.2020.09.011
[15] Tišler Z, Vondrová P, Hrachovcová K, Štepánek K, Velvarská R, Kocík J, Svobodová E. Aldol condensation of cyclohexanone and furfural in fixed-bed reactor. Catalysts. 2019;9:1068. doi: org/10.3390/catal9121068
[16] Pazoki F, Bagheri S, Shamsayei M, Jadidi Nejad M, Heydari A. BiPO4 decorated with Ni–Fe layered double hydroxide as a highly efficient and reusable heterogeneous catalyst for aldol condensation in green solvent. Materials Chemistry and Physics. 2020;253:123327. doi: org/10.1016/j.matchemphys.2020.123327
[17] Vrbkova E, Kovarova T, Vyskocilova E, Cerveny L. Heterogeneous catalysts in the aldol condensation of heptanal with cyclopentanone. Progress in Reaction Kinetics and Mechanism. 2019;45:1-10. doi: org/10.1177/1468678319825713
[18] Bhuyan B, Jyoti Koiri D, Devi M, Sankar Dhar S. A novel MnFe2O4/graphitic carbon nitride (-C3N4) nanocomposites as efficient magnetically retrievable catalyst in crossed aldol condensation. Materials Letters. 2018;218:99-102. doi: org/10.1016/j.matlet.2018.01.168
[19] Tang Y, Xu J, Gu X. Modified calcium oxide as stable solid base catalyst for Aldol condensation reaction. Journal of Chemical Sciences. 2013;125:313–320. doi: org/10.1007/s12039-013-0362-5
[20] Alminshid AH, Abbas MN, Alalwan HA, Sultan MA, Kadhom MA. Aldol condensation reaction of acetone on MgO nanoparticles surface: An in-situ drift investigation. Molecular Catalysis. 2021;501:111333. doi: org/10.1016/j.mcat.2020.111333
[21] Kikhtyanin O, Capek L, Tišler Z, Velvarská R, Panasewicz A, Diblíková P, Kubicka D. Physico-chemical properties of MgGa mixed oxides and reconstructed layered double hydroxides and their performance in aldol condensation of furfural and acetone. Frontiers in Chemistry. 2018;6:176. doi: org/10.3389/fchem.2018.00176
[22] Kikhtyanin O, Čapek L, Smoláková L, Tišler Z, Kadlec D, Lhotka M, Diblíková P, Kubička D. Influence of Mg−Al mixed oxide compositions on theirp and performance in aldol condensation. Industrial & Engineering Chemistry Research. 2017;56:13411–13422. doi: org/10.1021/acs.iecr.7b03367
[23] Kong X, Wei X.J, Li L.P, Fang Z, Lei H. Production of liquid fuel intermediates from furfural via aldol condensation over La2O2CO3-ZnO-Al2O3 catalyst. Catalysis Communications. 2021;149:106207. doi: org/10.1016/j.catcom.2020.106207
[24] Védrine JC. Heterogeneous Catalysis on metal oxides. Catalysts. 2017;7:341. doi: org/10.3390/catal7110341.
[25] El-Kemary M, Nagy N, El-Mehasseb I. Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose. Materials Science in Semiconductor Processing. 2013;16:1747–1752. doi: org/10.1016/j.mssp.2013.05.018.
[26] Sabouri Z, Akbari A, Hosseini HA, Khatami M, Darroudi M. Green-based bio-synthesis of nickel oxide nanoparticles in Arabic gum and examination of their cytotoxicity, photocatalytic and antibacterial effects. Green Chemistry Letters and Reviews. 2021;14:404–414. doi: org/10.1080/17518253.2021.1923824.
[27] Uddin S, Bin Safdar L, Anwar S, Iqbal J, Laila S, Ahsan Abbasi B, et al. Green synthesis of nickel oxide nanoparticles from berberis balochistanica stem for investigating bioactivities. Molecules. 2021;26:1548. doi: org/10.3390/molecules26061548.
[28] Thambidurai S, Gowthaman P, Venkatachalam M, Suresh S. Enhanced bactericidal performance of nickel oxide-zinc oxide nanocomposites synthesized by facile chemical co-precipitation method. Journal of Alloys and Compounds. 2020;830:154642. doi: org/10.1016/j.jallcom.2020.154642.
[29] Khandagale P, Shinde D. Synthesis & characterization of nickel oxide nanoparticles by using co-precipitation method. International Journal of Advanced Research. 2017;5:1333-1338. doi: org/10.21474/IJAR01/4253.
[30] Khashan KS, Sulaiman GM, Hamad AH, Abdulameer FA, Hadi A. Generation of NiO nanoparticles via pulsed laser ablation in deionised water and their antibacterial activity. Applied Physics A. 2017;123:190. doi: org/10.1007/s00339-017-0826-4
[31] Azhagu Raj R, AlSalhi MS, Devanesan S. Microwave-assisted synthesis of nickel oxide nanoparticles using coriandrum sativum leaf extract and their structural-magnetic vatalytic properties. Materials. 2017;10:460. doi: org/10.3390/ma10050460
[32] Ghazal S, Akbari A, Hosseini HA, Sabouri Z, Forouzanfar F, Khatami M, Darroudi M. Sol-gel biosynthesis of nickel oxide nanoparticles using Cydonia oblonga extract and evaluation of their cytotoxicity and photocatalytic activities. Journal of Molecular Structure. 2020;1217:128378. doi: org/10.1016/j.molstruc.2020.128378
[33] Pooyandeh S, Shahidi S, Khajehnezhad A, Ghoranneviss Z. Synthesizing and deposition of nickel oxide nanoparticles on glass mat using sol–gel method (morphological and magnetic properties). The Journal of The Textile Institute. 2021;112:887-895. doi: org/10.1080/00405000.2020.1785606
[34] Pilban Jahromi S, Huang. NM, Muhamad MR, Lim HN. Green gelatine-assisted sol–gel synthesis of ultrasmall nickel oxide nanoparticles. Ceramics International. 2013;39:3909-3914. doi: org/10.1016/j.ceramint.2012.10.237
[35] Kiani Ghaleh Sardi F, Behpour M, Ramezani Z, Masoum S. Simultaneous removal of Basic Blue41 and Basic Red46 dyes in binary aqueous systems via activated carbon from palm bio-waste: Optimization by central composite design, equilibrium, kinetic, and thermodynamic studies. Environmental Technology & Innovation. 2021;24:102039. doi: org/10.1016/j.eti.2021.102039
[36] Rahman N, Nasir M, Alothman AA, Al-Enizi AM, Ubaidullah M, Shaikh SF. Synthesis of 2-mercaptopropionic acid/hydrous zirconium oxide composite and its application for removal of Pb(II) from water samples: Central composite design for optimization. Journal of King Saud University – Science. 2021;33:101280. doi: org/10.1016/j.jksus.2020.101280
[37] Abolhasani S, Ahmadpour A, Rohani Bastami T, Yaqubzadeh A. Facile synthesis of mesoporous carbon aerogel for the removal of ibuprofen from aqueous solution by central composite experimental design (CCD). Journal of Molecular Liquids. 2019;281:261-268. doi: org/10.1016/j.molliq.2019.02.084
[38] Mahmodi Sheikh Sarmast Z, Sedaghat S, Derakhshi P, Aberoomand Azar P. Facile fabrication of silver nanoparticles grafted with Fe3O4-chitosan for efficient removal of amoxicillin from aqueous solution: Application of central composite design. Journal of Polymers and the Environment. 2022;30:2990–3004. doi: org/10.1007/s10924-022-02402-8
[39] Achour Y, Bahsis L, Ablouh EH, Hicham Yazid MR, Laamari MR, El Haddad M. Insight into adsorption mechanism of Congo red dye onto Bombax Buonopozense bark activated-carbon using central composite design and DFT studies. Surfaces and Interfaces. 2021;23:100977. doi: org/10.1016/j.surfin.2021.100977
[40] Qiao H, Wei Z, Yang H, Zhu L, Yan X. Preparation and characterization of NiO nanoparticles by anodic arc plasma method. Journal of Nanomaterials. 2009;479:2009. doi: org/10.1155/2009/795928
[41] Zare-Dorabei R, Jalalat V, Tadjarodi A. Central composite design optimization of Ce(III) ion removal from aqueous solution using modified SBA-15 mesoporous silica. New Journal of Chemistry. 2016;40:5128-5134. doi: org/10.1039/C6NJ00239K.
[42] Mase N, Nakai Y, Ohara N, Yoda H, Takabe K, Tanaka F, Barbas CF. Organocatalytic direct asymmetric aldol reactions in water. Journal of the American Chemical Society. 2006;128:734-735. doi: org/10.1021/ja0573312
[43] Sadiq M, Aman R, Saeed K, Sohail Ahmad M, Abid Zia M. Green and sustainable heterogeneous organo-catalyst for asymmetric aldol reactions. Modern Research in Catalysis. 2015;4:43-49. doi: org/10.4236/mrc.2015.42006
[44] Ishihara K, Obayashi R, Gotoh M, Watanabe Y, Kobayashi Y, Ishihara K, Shioiri T, Matsugi M. A recyclable and highly stereoselective multi-fluorous proline catalyst for asymmetric aldol reactions. Tetrahedron Letters. 2020; 61: 151657. doi: org/10.1016/j.tetlet.2020.151657
[45] An YJ, Zhang YX, Wu Y, Liu ZM, Pi C, Tao JC. Simple amphiphilic isosteviol–proline conjugates as chiral catalysts for the direct asymmetric aldol reaction in the presence of water. Tetrahedron: Asymmetry. 2010;21:688–694. doi: org/10.1016/j.tetasy.2010.04.019