بررسی بازیابی آلفاآمیلاز با سامانه دو فازی آبی در ابعاد میکرو
محورهای موضوعی : مهندسی شیمیفرشاد راجی 1 , احمد رهبر کلیشمی 2
1 - . کارشناسی ارشد مهندسی شیمی، آزمایشگاه فرایندهای پیشرفته جداسازی، دانشکده مهندسی شیمی نفت و گاز، دانشگاه علم و صنعت ایران، تهران، ایران
2 - دانشیار گروه فرآیندهای جداسازی، آزمایشگاه فرایندهای پیشرفته جداسازی، دانشکده مهندسی شیمی نفت و گاز، دانشگاه علم و صنعت ایران، تهران، ایران.
کلید واژه: استخراج, آلفا-آمیلاز, ریزسیالش, سامانههای دو فازی آبی, زیستمولکول,
چکیده مقاله :
سامانه دو فازی آبی ریزسیالی بستری مناسب برای جداسازی و بازیابی مواد زیستی در زمینه فناوری زیستی است. این سامانه امکاناتی را فراهم می کند که در روش های ماکرو امکان پذیر نیست یا به سختی قابل اجرا است. در این پژوهش، بازیابی آلفاآمیلاز با سامانه دو فازی آبی پلی اتیلن گلیکول/ سدیم سیترات، بر یک دستگاه ریزسیال شیشه ای که با روش لیزر CO2 ساخته شده، بررسی شد. عامل های موثر با مقادیر متفاوت غلظت (50 تا mg/l 125) و سرعت جریان (8/0 تاml/h 2) آزمایش شدند. روش سطح پاسخ (RSM) برای تعیین بهینه عامل های عملیاتی به کارگرفته شد. انتقال آلفا آمیلاز از فاز نمک به فاز پلی اتیلن گلیکول با الگوی جریان موازی، انجام شد. مقادیر به دست آمده در نقطه بهینه نیز در مقایسه با مقدار پیش بینی شده از معادله های طراحی آزمایش، خطای اندکی داشت. استفاده از سامانه ریزسیالی موردمطالعه در این پژوهش به واسطه ابعاد میکرو، موجب افزایش بازیابی نسبت به سامانه های ماکرو خواهد بود. همین طور کاهش زمان این فرایند در ابعاد میکرو نسبت به ابعاد ماکرو قابل توجه بود.
The microfluidic aqueous two-phase system is a new method and is a suitable platform for the separation and recovery of biomaterials in the field of biotechnology. The combination of aqueous two-phase systems with microfluidic systems provides features that are not possible or difficult to achieve in macro methods. According to studies, aqueous two-phase system can be considered as a low-cost, environmentally friendly, and effective method for the separation of biomolecules, but its combination with microfluidic systems adds to its attractiveness. In the studied system, due to its dimensions, it showed the potential ability to accelerate the design and separation of biological processes. Alpha-amylase recovery was investigated with an aqueous two-phase polyethylene glycol/sodium citrate system on a glass microfluidic device made by the Co2-laser method. Effective parameters were tested with different values of concentration (125-150 mg / L) and flow rate (0.8-2 mL / h). The response surface method (RSM) was used to optimally determine the operational parameters. Transfer of alpha-amylase from the salt phase to the polyethylene glycol phase was performed with a parallel flow pattern. The values obtained at the optimal point also had a small error compared to the predicted value of the experimental design equations. The use of the microfluidic system studied in this study due to the micro dimensions will increase the recovery rate compared to macro systems, as well as the reduction of the time of this process in the micro dimensions compared to macro dimensions was significant.
[1] Pazuki, G.R.; Taghikhani, V.; Vossoughi, M.; Part. Sci. Technol. 28, 67–73, 2010.
[2] Tehrani, M.A.S.; Haghtalab, A.; J. Chem. Eng. Data. 64, 5448–5461, 2019.
[3] Soares, R.R.G.; Silva, D.F.C.; Fernandes, P.; Azevedo, A.M.; Chu, V.; Conde, J.P.; Aires-Barros, M.R.; Biotechnol. J. 11, 1498–1512, 2016.
[4] Yin, C.Y.; Nikoloski, A.N.; Wang, M.; Miner. Eng. 45, 18–21, 2013.
[5] Xu, C.; Xie, T.; Ind. Eng. Chem. Res. 56, 7593–7622, 2017.
[6] Abbasi, A.; Seifollahi, Z.; Rahbar-kelishami, A.; Sep. Sci. Tech. 56, 1047-1059, 2020.
[7] Farahani, A.; Rahbar-kelishami, A.; Shayesteh, H.; Sep. Purif. Technol. 258, 118031, 2020.
[8] Hardt, S.; Hahn, T.; Lab on a Chip 12, 434–442, 2012.
[9] Vicente, F.A.; Plazl, I.; Ventura, S.P.M.; Žnidaršič-Plazl, P.; Green Chem. 22, 4391–4410, 2020.
[10] Münchow, G.; Schönfeld, F.; Hardt, S.; Graf, K.; Langmuir 83, 8547–8553, 2008.
[11] Meagher, R.J.; Light, Y.K.; Singh, A.K.; Lab on a Chip 8, 527–532, 2008.
[12] Lu, Y.; Xia, Y.; Luo, G.; Microfluid. Nanofluidics 10, 1079–1086, 2011.
[13] Huang, Y.; Meng, T.; Guo, T.; Li, W.; Yan, W.; Li, X.; Wang, S.; Tong, Z.; Microfluidics and Nanofluidics 16, 483–491, 2014.
[14] Novak, U.; Lakner, M.; Plazl, I.; Žnidaršič-Plazl, P.; Microfluidics and Nanofluidics 19, 75–83, 2015.
[15] Abbasi, A.; Rahbar-kelishami, A.; Ghasemi, M.J.; J. Rare Earths 36, 1198–1204, 2018.
[16] Wysoczanska, K.; Macedo, E.A.; Fluid Phase Equilib. 428, 84–91, 2016.
[17] Raji, F.; Rahbar-kelishami, A.; Colloids Surfaces A Physicochem. Eng. Asp. 624, 126823, 2021.
[18] Saha, D.; Mukherjee, A.; Biophys. Rev. 10, 795–808, 2018.
[19] Raji, F.; Rahbar-kelishami, A.; Chem. Eng. Process. - Process Intensif. 163, 108370, 2021.
[20] Jalilvand, P.; Rahbar-kelishami, A.; Mohammadi, T.; Shayesteh, H.; J. Mol. Liq. 308, 113014, 2020.
[21] Albertsson, P.; Adv. Protein Chem. 24, 309–341, 1970.
[22] Azarang, A.; Rahbar-kelishami, A.; Norouzbeigi, R.; Shayesteh, H.; Environ. Technol. Innov. 15, 100432, 2019.
_||_[1] Pazuki, G.R.; Taghikhani, V.; Vossoughi, M.; Part. Sci. Technol. 28, 67–73, 2010.
[2] Tehrani, M.A.S.; Haghtalab, A.; J. Chem. Eng. Data. 64, 5448–5461, 2019.
[3] Soares, R.R.G.; Silva, D.F.C.; Fernandes, P.; Azevedo, A.M.; Chu, V.; Conde, J.P.; Aires-Barros, M.R.; Biotechnol. J. 11, 1498–1512, 2016.
[4] Yin, C.Y.; Nikoloski, A.N.; Wang, M.; Miner. Eng. 45, 18–21, 2013.
[5] Xu, C.; Xie, T.; Ind. Eng. Chem. Res. 56, 7593–7622, 2017.
[6] Abbasi, A.; Seifollahi, Z.; Rahbar-kelishami, A.; Sep. Sci. Tech. 56, 1047-1059, 2020.
[7] Farahani, A.; Rahbar-kelishami, A.; Shayesteh, H.; Sep. Purif. Technol. 258, 118031, 2020.
[8] Hardt, S.; Hahn, T.; Lab on a Chip 12, 434–442, 2012.
[9] Vicente, F.A.; Plazl, I.; Ventura, S.P.M.; Žnidaršič-Plazl, P.; Green Chem. 22, 4391–4410, 2020.
[10] Münchow, G.; Schönfeld, F.; Hardt, S.; Graf, K.; Langmuir 83, 8547–8553, 2008.
[11] Meagher, R.J.; Light, Y.K.; Singh, A.K.; Lab on a Chip 8, 527–532, 2008.
[12] Lu, Y.; Xia, Y.; Luo, G.; Microfluid. Nanofluidics 10, 1079–1086, 2011.
[13] Huang, Y.; Meng, T.; Guo, T.; Li, W.; Yan, W.; Li, X.; Wang, S.; Tong, Z.; Microfluidics and Nanofluidics 16, 483–491, 2014.
[14] Novak, U.; Lakner, M.; Plazl, I.; Žnidaršič-Plazl, P.; Microfluidics and Nanofluidics 19, 75–83, 2015.
[15] Abbasi, A.; Rahbar-kelishami, A.; Ghasemi, M.J.; J. Rare Earths 36, 1198–1204, 2018.
[16] Wysoczanska, K.; Macedo, E.A.; Fluid Phase Equilib. 428, 84–91, 2016.
[17] Raji, F.; Rahbar-kelishami, A.; Colloids Surfaces A Physicochem. Eng. Asp. 624, 126823, 2021.
[18] Saha, D.; Mukherjee, A.; Biophys. Rev. 10, 795–808, 2018.
[19] Raji, F.; Rahbar-kelishami, A.; Chem. Eng. Process. - Process Intensif. 163, 108370, 2021.
[20] Jalilvand, P.; Rahbar-kelishami, A.; Mohammadi, T.; Shayesteh, H.; J. Mol. Liq. 308, 113014, 2020.
[21] Albertsson, P.; Adv. Protein Chem. 24, 309–341, 1970.
[22] Azarang, A.; Rahbar-kelishami, A.; Norouzbeigi, R.; Shayesteh, H.; Environ. Technol. Innov. 15, 100432, 2019.