مروری بر کاتالیستهای فرآیند سوپرکلاوس به منظور بازیابی گوگرد
محورهای موضوعی : شیمی کاربردیصدیقه صادق حسنی 1 , راحله سعیدی راد 2 , الهام یعقوبپور 3 , علی چشمهروشن 4 , سپهر صدیقی 5 , مریم مشایخی 6
1 - مدیر گروه ساخت کاتالیست، پژوهشکده کاتالیست و نانوفناوری، پژوهشگاه صنعت نفت، تهران، ایران|انستیتوی فراورش گاز، پژوهشگاه صنعت نفت، تهران، ایران
2 - پژوهشگر شیمی آلی، پژوهشکده توسعه فناوریهای کاتالیست، پژوهشگاه صنعت نفت، تهران، ایران
3 - پژوهشگر مهندسی شیمی، پژوهشکده توسعه فناوریهای کاتالیست، پژوهشگاه صنعت نفت، تهران، ایران
4 - پژوهشگر مهندسی شیمی، پژوهشکده توسعه فناوریهای کاتالیست، پژوهشگاه صنعت نفت، تهران، ایران|انستیتوی فراورش گاز، پژوهشگاه صنعت نفت، تهران، ایران
5 - استادیار مهندسی شیمی، پژوهشکده توسعه فناوریهای کاتالیست، پژوهشگاه صنعت نفت، تهران، ایران|انستیتوی فراورش گاز، پژوهشگاه صنعت نفت، تهران، ایران
6 - پژوهشگر مهندسی شیمی، پژوهشکده توسعه فناوریهای کاتالیست، پژوهشگاه صنعت نفت، تهران، ایران|انستیتوی فراورش گاز، پژوهشگاه صنعت نفت، تهران، ایران
کلید واژه: گوگرد, سوپرکلاوس, هیدروژن سولفید, اکسایش انتخابی,
چکیده مقاله :
هیدروژن سولفید یک فراورده فرعی در فرایندهای مربوط به سوخت های فسیلی (مانند گاز طبیعی و نفت خام) است. اکسایش انتخابی هیدروژن سولفید (سوپرکلاوس) در ادامه فرایند کلاوس، برای تبدیل باقی مانده هیدروژن سولفید به گوگرد مورد استفاده قرار می گیرد و سهم بزرگی در کنترل و کاهش گازهای آلاینده دارد. کاتالیست های مورد استفاده در این فرایند، نقش بسیار مهمی در میزان بازده تولید گوگرد ایفا می کنند. مواد گوناگونی به عنوان کاتالیست برای حذف هیدروژن سولفید به کارگرفته می شوند. این کاتالیستها ویژگی های خاصی دارند که آن ها را برای تبدیل هیدروژن سولفید به گوگرد متمایز می کند. در این مطالعه انواع کاتالیست های به کارگرفته شده در واحد سوپرکلاوس بررسی شده است. کاتالیستهای مبتنی بر پایه شامل اکسیدهای فلزی، ترکیب های کربنی، زئولیتی و خاک رس، همچنین، کاتالیست های بدون پایه شامل اکسید فلزها، آهن و وانادیم در اکسایش انتخابی هیدروژن سولفید به گوگرد مورد پژوهش قرار گرفته اند.
Hydrogen sulfide is a by-product of processes related to fossil fuels (such as natural gas and crude oil). Selective oxidation of hydrogen sulfide process (superclaus) following the claus process used to convert residual hydrogen sulfide to sulfur and plays a major role in controlling and reducing pollutant gases. The catalysts used in this process play a very important role in the production efficiency of elemental sulfur and various materials can be used as catalysts to decrease hydrogen sulfide. These catalysts have specific surface area, porosity, mechanical resistance, particle size distribution, acidity, and other special properties that distinguish them for converting hydrogen sulfide to sulfur. In this study, different types of catalysts that used in the superclaus process are investigated. In this regard, support based catalysts including metal oxides, carbon compounds, zeolites and clays supports as well as supportless catalysts including metal oxides, iron, and vanadium in the selective oxidation of hydrogen sulfide to sulfur are investigated.
[1] Aghabozorg, H.R.; Sadegh Hassani, S.; “Removal of pollutants from environment using sorbents and nanocatalysts” in: “Advanced Environmental Analysis”, 74-89, RSC Publisher, U.K., 2016.
[2] Daraee. M.; Sadegh Hassani, S.; Iranian Chemical Engineering Journal 105, 18-31, 1398.
[3] Saeedirad, R.; Taghvaei Ganjali, S.; Bazmi, M.; Rashidi, A., Journal of the Taiwan Institute of Chemical Engineers 82, 10-22, 2018.
[4] Daraee, M; Saeedirad, R; Rashidi, A.; Journal of Solid State Chemistry 278, 120866, 2019.
[5] Saeedirad, R.; Taghvaei Ganjali, S.; Rashidi, A.; Bazmi, M.; ChemistrySelect. 5(1), 231-243, 2020.
[6] Saeedirad, R.; Ghasemy, E.; Rashidi, A.; Journal of Environmental Chemical Engineering 9, 1,104806, 2021.
[7] Saeedirad, R.; Rashidi, A.; Daraee, M; Bazmi, M.; Askari, S.; ChemistrySelect. 5(43), 13530-13536, 2020.
[8] Rashidi, A.; Mohammadzadeh, F.; Sadegh Hassani, S.; "Hydrodesulfurization (HDS) process based on nano-catalysts: The role of supports" in: "Nanotechnology in Oil and Gas Industries", 193-210, Springer Nature, Switzerland, 2018.
[9] Shahsavand, A.; Enferadi, A.; Iranian Chemical Engineering Journal 8, 39-50, 2009.
[10] Sadighi, S.; Mohaddesi, S.R.S.; Rashidzadeh, M.; Chem. Rev. 107, 2411-2502, 2007.
[11] Sadighi, S.; Mohaddecy, S.R.S.; Rashidzadeh, M.; Bulletin of Chemical Reaction Engineering & Catalysis 15, 465-475, 2020.
[12] Sadighi, S.; Mohaddecy, S.R.S.; Rashidzadeh, M.; Nouriasl, P.; Petroleum Chemistry 60, 321-328, 2020.
[13] Borsboom, J.; Van Nisselrooij, P.F.M.T., Patent No. EP1295848A1 2004.
[14] Terörde, R.J.A.M.; Van den Brink, P.J.; Visser, L.M.; Van Dillen, A.J.; Geus, J. W.; Catalysis Today 17, 217-224, 1993.
[15] Van Nisselrooy, P.F.M.T.; Lagas, J.A.; Catal. Today 16, 263-271, 1993.
[16] Warners, V.; WO Patent 056828 A1, 2018.
[17] Zhang, X.; Tang, Y.; Qu, S.; Da, J.; Hao, Z.; ACS Catalysis 5(2), 1053-1067,2015.
[18] Steijns, M.; Mars, P.; Journal of Catalysis 35(1), 11-17, 1974.
[19] Fang, H.B.; Zhao, J.T.; Fang, Y.T.; Huang, J.J.; Wang, Y.; Fuel. 108, 143-148, 2013.
[20] Shinkarev, V.; Kuvshinov, G.; Zagoruiko, A.; Reaction Kinetics, Mechanisms and Catalysis. 123( 2), 625-639, 2018.
[21] Chun, S.W.; Jang, J.Y.; Park, D.W.; Woo, H.C.; Chung, J.S.; Applied Catalysis B: Environmental 16, 235-243, 1998.
[22] Uhm, J.H.; Shin, M.Y.; Zhidong, J.; Chung, J.S.; Applied Catalysis B: Environmental 22, 293-303, 1999.
[23] Park, S.E.; Ryoo, R.; Ahn, W.S.; Lee, C.W.; Chang, J.S.; "Studies in Surface Science and Catalysis", Elsevier, Amsterdam, 2003.
[24] Shin, M-Young.; Won Park, D.; Shik, C.; Catalysis Today 63(2), 405-411, 2000.
[25] Shin, M- Young.; Applied Catalysis A: General 211(2), 213-225, 2001.
[26] Terörde, R.J.A.M.; de Jong, M.C.; Crombag, M.J.D.; van den Brink, P.J.; van Dillen, A.J.; Geus, J.W.; "Selective oxidation of hydrogen sulfdde on a sodium promoted dion oxide on silica catalyst" in "New developments in selective oxidation II", Elsevior, U.S., 1993.
[27] Bukhtiyarova, G.A.; Delii, I.V.; Sakaeva, N.S.; Kaichev, V.V.; Plyasova, L.M.; Bukhtiyarov, V.I.; Reaction Kinetics and Catalysis Letters 92(1), 89-97, 2007.
[28] Reverberi, A-Pi.; Jaromír Klemeš, J.; Sabev Varbanov, P.; Bruno, F.; Journal of cleaner production 136, 72-80, 2016.
[29] Batygina, M. V.; Dobrynkin, N. M.; Kirichenko, O. A.; Khairulin, S. R.; Ismagilov, Z. R.; Reaction Kinetics and Catalysis Letters 48(1), 55-63, 1992.
[30] Lee, J.D.; Jun, J.H.; Park, N.K.; Ryu, S.O.; Lee, T.; Korean Journal of Chemical Engineering 22(1), 36-41, 2005.
[31] Davydov, A.A.; Marshneva, V.I.; Shepotko, M.L.; Applied Catalysis A: General. 244(1), 93-100, 2003.
[32] Laperdrix, E.; Costentin, G.; Nguyen, N.; Studer, F.; Lavalley, J.C.; Catalysis Today 61,149-155, 2000.
[33] Koyuncu, D.E.; Yasyerli, S.; Industrial & Engineering Chemistry Research 48(11), 5223-5229, 2009.
[34] Li, K.T.; Yen, C.S.; Shyu, N.S.; Applied Catalysis A: General 156(1), 117-130, 1997.
[35] Kersen, Ü.; Keiski, R.L.; Catalysis Communications 10(7), 1039-1042, 2009.
[36] Reyes-Carmona, Á.; Soriano, M.D.; Nieto, J.M.L.; Jones, D.J.; Jiménez-Jiménez, J.; Jiménez-López, A.; Rodríguez-Castellón, E.; Catalysis Today 210, 117-123, 2013.
[37] Li, K.T.; Huang, M.Y.; Cheng, W.D.; Industrial & Engineering Chemistry Research 35(2), 621-626, 1996.
[38] Shin, M.Y.; Park, D.W.; Chung, J.S.; Applied Catalysis B: Environmental 30(3-4), 409-419, 2001.
[39] Soriano, M.D.; Rodríguez-Castellón, E.; García-González, E.; Nieto, J.L.; Catalysis Today 238, 62-68, 2014.
[40] Soriano, M.D.; Nieto, J.L.; Ivars, F.; Concepcion, P.; Rodríguez-Castellón, E.; Catalysis Today 192(1), 28-35, 2012.
[41] Geus, J.W.; Terörde, R.J.A.M.; U.S. Patent 6919296, 2005.
[42] Terorde, R.J.A.M.; Geus, J.W.; U.S. Patent 5814293, 1998.
[43] Berben, P H.; Geus, J.W.; U.S. Patent 4818740, 1989.
[44] van den Brink, P. J.; Geus, J.W.; U.S. Patent 5352422, 1994.
[45] Sugier, A.; Courty, Ph.; Deschamps, A.; Gruhier, H.; U.S. Patent 4277458, 1981.
[46] Li, K.T.; Huang, M.Y.; Cheng, W.D., U.S. Patent 5653953, 1997.
[47] Li, K.T.; Ker, Y.C.; U.S. Patent 5700440, 1997.
[48] Yang, N.; Yang, Y.; Zhang, X.; An, R.; Hao, C.; Zhang, Y.; Zhu, Y., U.S. Patent 10166531, 2019.
[49] Soriano, M.D.; Rodríguez-Castellón, E.; García-González, E.; Nieto, J.L.; Catalysis Today. 238, 62-68, 2014.
[50] Antonio, C.; Dolores S., M.; Natoli, A.; Castellón, E-R.; López Nieto, J-M. Materials 11(9), 1562, 2018.
[51] Lee, J.D.; Han, G.B.; Park, N.K.; Ryu, S.O.; Lee, T.; Journal of Industrial and Engineering Chemistry 12(1), 80-85, 2006.
_||_[1] Aghabozorg, H.R.; Sadegh Hassani, S.; “Removal of pollutants from environment using sorbents and nanocatalysts” in: “Advanced Environmental Analysis”, 74-89, RSC Publisher, U.K., 2016.
[2] Daraee. M.; Sadegh Hassani, S.; Iranian Chemical Engineering Journal 105, 18-31, 1398.
[3] Saeedirad, R.; Taghvaei Ganjali, S.; Bazmi, M.; Rashidi, A., Journal of the Taiwan Institute of Chemical Engineers 82, 10-22, 2018.
[4] Daraee, M; Saeedirad, R; Rashidi, A.; Journal of Solid State Chemistry 278, 120866, 2019.
[5] Saeedirad, R.; Taghvaei Ganjali, S.; Rashidi, A.; Bazmi, M.; ChemistrySelect. 5(1), 231-243, 2020.
[6] Saeedirad, R.; Ghasemy, E.; Rashidi, A.; Journal of Environmental Chemical Engineering 9, 1,104806, 2021.
[7] Saeedirad, R.; Rashidi, A.; Daraee, M; Bazmi, M.; Askari, S.; ChemistrySelect. 5(43), 13530-13536, 2020.
[8] Rashidi, A.; Mohammadzadeh, F.; Sadegh Hassani, S.; "Hydrodesulfurization (HDS) process based on nano-catalysts: The role of supports" in: "Nanotechnology in Oil and Gas Industries", 193-210, Springer Nature, Switzerland, 2018.
[9] Shahsavand, A.; Enferadi, A.; Iranian Chemical Engineering Journal 8, 39-50, 2009.
[10] Sadighi, S.; Mohaddesi, S.R.S.; Rashidzadeh, M.; Chem. Rev. 107, 2411-2502, 2007.
[11] Sadighi, S.; Mohaddecy, S.R.S.; Rashidzadeh, M.; Bulletin of Chemical Reaction Engineering & Catalysis 15, 465-475, 2020.
[12] Sadighi, S.; Mohaddecy, S.R.S.; Rashidzadeh, M.; Nouriasl, P.; Petroleum Chemistry 60, 321-328, 2020.
[13] Borsboom, J.; Van Nisselrooij, P.F.M.T., Patent No. EP1295848A1 2004.
[14] Terörde, R.J.A.M.; Van den Brink, P.J.; Visser, L.M.; Van Dillen, A.J.; Geus, J. W.; Catalysis Today 17, 217-224, 1993.
[15] Van Nisselrooy, P.F.M.T.; Lagas, J.A.; Catal. Today 16, 263-271, 1993.
[16] Warners, V.; WO Patent 056828 A1, 2018.
[17] Zhang, X.; Tang, Y.; Qu, S.; Da, J.; Hao, Z.; ACS Catalysis 5(2), 1053-1067,2015.
[18] Steijns, M.; Mars, P.; Journal of Catalysis 35(1), 11-17, 1974.
[19] Fang, H.B.; Zhao, J.T.; Fang, Y.T.; Huang, J.J.; Wang, Y.; Fuel. 108, 143-148, 2013.
[20] Shinkarev, V.; Kuvshinov, G.; Zagoruiko, A.; Reaction Kinetics, Mechanisms and Catalysis. 123( 2), 625-639, 2018.
[21] Chun, S.W.; Jang, J.Y.; Park, D.W.; Woo, H.C.; Chung, J.S.; Applied Catalysis B: Environmental 16, 235-243, 1998.
[22] Uhm, J.H.; Shin, M.Y.; Zhidong, J.; Chung, J.S.; Applied Catalysis B: Environmental 22, 293-303, 1999.
[23] Park, S.E.; Ryoo, R.; Ahn, W.S.; Lee, C.W.; Chang, J.S.; "Studies in Surface Science and Catalysis", Elsevier, Amsterdam, 2003.
[24] Shin, M-Young.; Won Park, D.; Shik, C.; Catalysis Today 63(2), 405-411, 2000.
[25] Shin, M- Young.; Applied Catalysis A: General 211(2), 213-225, 2001.
[26] Terörde, R.J.A.M.; de Jong, M.C.; Crombag, M.J.D.; van den Brink, P.J.; van Dillen, A.J.; Geus, J.W.; "Selective oxidation of hydrogen sulfdde on a sodium promoted dion oxide on silica catalyst" in "New developments in selective oxidation II", Elsevior, U.S., 1993.
[27] Bukhtiyarova, G.A.; Delii, I.V.; Sakaeva, N.S.; Kaichev, V.V.; Plyasova, L.M.; Bukhtiyarov, V.I.; Reaction Kinetics and Catalysis Letters 92(1), 89-97, 2007.
[28] Reverberi, A-Pi.; Jaromír Klemeš, J.; Sabev Varbanov, P.; Bruno, F.; Journal of cleaner production 136, 72-80, 2016.
[29] Batygina, M. V.; Dobrynkin, N. M.; Kirichenko, O. A.; Khairulin, S. R.; Ismagilov, Z. R.; Reaction Kinetics and Catalysis Letters 48(1), 55-63, 1992.
[30] Lee, J.D.; Jun, J.H.; Park, N.K.; Ryu, S.O.; Lee, T.; Korean Journal of Chemical Engineering 22(1), 36-41, 2005.
[31] Davydov, A.A.; Marshneva, V.I.; Shepotko, M.L.; Applied Catalysis A: General. 244(1), 93-100, 2003.
[32] Laperdrix, E.; Costentin, G.; Nguyen, N.; Studer, F.; Lavalley, J.C.; Catalysis Today 61,149-155, 2000.
[33] Koyuncu, D.E.; Yasyerli, S.; Industrial & Engineering Chemistry Research 48(11), 5223-5229, 2009.
[34] Li, K.T.; Yen, C.S.; Shyu, N.S.; Applied Catalysis A: General 156(1), 117-130, 1997.
[35] Kersen, Ü.; Keiski, R.L.; Catalysis Communications 10(7), 1039-1042, 2009.
[36] Reyes-Carmona, Á.; Soriano, M.D.; Nieto, J.M.L.; Jones, D.J.; Jiménez-Jiménez, J.; Jiménez-López, A.; Rodríguez-Castellón, E.; Catalysis Today 210, 117-123, 2013.
[37] Li, K.T.; Huang, M.Y.; Cheng, W.D.; Industrial & Engineering Chemistry Research 35(2), 621-626, 1996.
[38] Shin, M.Y.; Park, D.W.; Chung, J.S.; Applied Catalysis B: Environmental 30(3-4), 409-419, 2001.
[39] Soriano, M.D.; Rodríguez-Castellón, E.; García-González, E.; Nieto, J.L.; Catalysis Today 238, 62-68, 2014.
[40] Soriano, M.D.; Nieto, J.L.; Ivars, F.; Concepcion, P.; Rodríguez-Castellón, E.; Catalysis Today 192(1), 28-35, 2012.
[41] Geus, J.W.; Terörde, R.J.A.M.; U.S. Patent 6919296, 2005.
[42] Terorde, R.J.A.M.; Geus, J.W.; U.S. Patent 5814293, 1998.
[43] Berben, P H.; Geus, J.W.; U.S. Patent 4818740, 1989.
[44] van den Brink, P. J.; Geus, J.W.; U.S. Patent 5352422, 1994.
[45] Sugier, A.; Courty, Ph.; Deschamps, A.; Gruhier, H.; U.S. Patent 4277458, 1981.
[46] Li, K.T.; Huang, M.Y.; Cheng, W.D., U.S. Patent 5653953, 1997.
[47] Li, K.T.; Ker, Y.C.; U.S. Patent 5700440, 1997.
[48] Yang, N.; Yang, Y.; Zhang, X.; An, R.; Hao, C.; Zhang, Y.; Zhu, Y., U.S. Patent 10166531, 2019.
[49] Soriano, M.D.; Rodríguez-Castellón, E.; García-González, E.; Nieto, J.L.; Catalysis Today. 238, 62-68, 2014.
[50] Antonio, C.; Dolores S., M.; Natoli, A.; Castellón, E-R.; López Nieto, J-M. Materials 11(9), 1562, 2018.
[51] Lee, J.D.; Han, G.B.; Park, N.K.; Ryu, S.O.; Lee, T.; Journal of Industrial and Engineering Chemistry 12(1), 80-85, 2006.