مقایسه روش استخراج حلالی و غشای مایع با استخراجکننده سیانکس 301 در استخراج و بازیابی یونهای کبالت دوظرفیتی
محورهای موضوعی : مهندسی شیمی
1 - استادیار پژوهشکده چرخه سوخت هسته پژوهشگاه علوم و فنون هسته، سازمان انرژی اتمی ایران
کلید واژه: سیانکس 301, کبالت, استخراج با حلال, غشای مایع ثبیت شده بر پایه,
چکیده مقاله :
در این مطالعه، استخراج یونهای کبالت دو ظرفیتی از محلول کلرید با استخراجکننده سیانکس 301 و با دو روش استخراج با حلال و غشای مایع تثبیت شده بر پایه، بررسی شد. تأثیر عامل های متفاوتی مانند pH محلول خوراک، غلظت استخراجکننده سیانکس 301، غلظت اسید بازیابکننده برای تعیین شرایط بهینه مورد بررسی قرار گرفت. در فرایند غشایی، pH خوراک آبی برابر با 5/7 و غلظت سیانکس 301 برابر باM 1 بهترین شرایط را برای استخراج نشان داد، در حالی که بهترین بازده استخراج از راه روش با حلال با غلظت M 1/0 بهدست آمد. بازده استخراج برابر با 11/99 % در مدت 15 دقیقه با روش استخراج حلال به دست آمد، در حالی که بیشینه استخراج کبالت برابر با 76/44 % در 180 دقیقه با بهکارگیری غشای مایع بهدست آمد. نتیجه ها نشان داد که بهبودی در فرایند استخراج کبالت با غشای مایع تثبیتشده در مقایسه با روش استخراج حلالی بهدست نیامده است.
In this study, the extraction of cobalt (II) ions from the chloride solution by using Cyanex301 as an extractant and two extraction methods such as solvent extraction and supported liquid membrane was investigated. The effect of different parameters such as pH of feed solution, concentration of Cyanex301 extractant and stripping acid concentration were studied to determine the optimum conditions. For the liquid membrane process, the aqueous feed pH of 7.3 and 1 mol/L of Cyanex301 in the membrane phase were the best conditions for extraction, whereas the best extraction efficiency by using the solvent extraction method was achieved with 0.1 mol/L of Cyanex301 concentration. The extraction efficiency equal to 99.11% was achieved within 15 min by solvent extraction technique, while the maximum extraction of Cobalt equal to 44.77% was achieved within 180 min by means of liquid membrane. The result shows that the extraction of Cobalt by using the supported liquid membrane were not improved in comparison with using conventional solvent extraction method.
[1] Davis, J.R.; "Nickel, Cobalt and Their Alloys", The Materials Information Society, New York, 2000.
[2] Hawkins, M.; Appl. Earth Sci. 110, 66-70, 2001.
[3] Diamond, J.M.; Winchester, E.L.; Mackler, D.G.; Rasnake, W.J.; Fanelli, J.K.; Gruber, D.; Aquat Toxicol. 22, 163-179, 1992.
[4] Watt, S.; "The Elements Cobalt", Marshall Cavendish, New York, 2007.
[5] Kumbasar, R.A.; Sep. Purif. Technol. 68, 208-215, 2009.
[6] León, G., Guzmán, M.A.; Desalination 162, 211-215, 2004.
[7] Gómez-Lahoz, C.; García-Herruzo, F.; Rodríguez-Maroto, J.M.; Rodríguez, J.; J. Water Res. 27, 985-992, 1993.
[8] Oustadakis, P.; Agatzini-Leonardou, S.; Tsakiridis, P.E.; Miner. Eng. 19, 1204-1211, 2006.
[9] Kim, J.S.; Keane, M.A.; J. Chem. Technol. Biotechnol. 77, 633-640, 2002.
[10] Blitz-Raitha, A.H., Paimina, R., Cattrallb, R.W., Kolev, S.D.; Talanta 71, 419-423, 2007.
[11] Travieso, L.; Pellón, A.; Benı́tez, F.; Sánchez, E.; Borja, R.; O’Farrill, N.; Weiland, P.; Biochem. Eng. J. 12, 87-91, 2002.
[12] Vijayaraghavana, K.; Jeganb, J.; Palaniveluc, K.; Velan, M.; Chemosphere 60, 419-426, 2005.
[13] Netzer, A.; Hughes, D.E.; Water Res. 18, 927-933, 1984.
[14] Tounsadi, H.; Khalidi, A.; Farnane, M.; Abdennouri, M.; Barka, N.; Process Saf. Environ. 102, 710-723, 2016.
[15] Preston, J.S.; Sep. Sci. Technol. 17, 1697-1718, 1982.
[16] Swain, B.; Cho, S.S.; Lee, G.H.; Lee, C.G.; Uhm, S.; Appl. Chem. Eng. 26, 631-639, 2015.
[17] Gega, J.; Walkowiak, W.; Gajda, B.; Sep. Purif. Technol. 22–23, 551-558, 2001.
[18] Gupta, S.; Chakraborty, M.; Murthy, Z.V.P.; "Reference Module in Chemistry, Molecular Sciences and Chemical Engineering", New York, Elsevier, 2013.
[19] Hachemaoui, A.; Belhamel, K.; Inter. J. Miner. Process 161, 7-12, 2017.
[20] Swain, B.; Jeong, J.; Lee, J.C.; Lee, G.H.; J. Mem. Sci. 288, 139-148, 2007.
[21] Vernekar, P.V.; Jagdale, Y.D.; Patwardhan, A.W.; Patwardhan, A.V.; Ansari, S.A.; Mohapatra, P.K.; Manchanda, V.K.; Chem. Eng. Res. Des. 91, 141-157, 2013.
[22] Verbeken, K.; Vanheule, B.; Pinoy, L.; Verhaege, M.; J. Chem. Technol. Biotechnol. 84, 711-715, 2009.
[23] Parhi, P.K.; Sarangi, K.; Sep. Purif. Technol. 59, 169-174, 2008.
[24] Kumbasar, R.A.; Tutkun, O.; Desalination, 224, 201-208, 2008.
[25] Kumbasar, R.A.; J. Ind. Eng. Chem. 18, 2076-2082, 2012.
[26] Surucu, A.; Eyupoglu, V.; Tutkun, O.; J. Ind. Eng. Chem. 18, 629-634, 2012.
[27] Van de Voorde, I.; Pinoy, L.; Courtijn, E.; Verpoort, F.; Hydrometallurgy 78, 92-106, 2005.
[28] Kasaini, H.; Nakashio, F.; Goto, M.; J. Mem. Sci. 146, 159-168, 1998.
[29] Sadyrbaeva , Z.T.; Desalination 365, 167-175, 2015.
[30] Yıldız, Y.; Manzak, A.; Tutkun, O.; Desalination Water Treat. 53, 1246-1253, 2015.
[31] Marczenko, Z.; Balcerzak, M; "Separation, Preconcentration and Spectrophotometry in Inorganic Analysis", Elsevier, New York, 2000
_||_[1] Davis, J.R.; "Nickel, Cobalt and Their Alloys", The Materials Information Society, New York, 2000.
[2] Hawkins, M.; Appl. Earth Sci. 110, 66-70, 2001.
[3] Diamond, J.M.; Winchester, E.L.; Mackler, D.G.; Rasnake, W.J.; Fanelli, J.K.; Gruber, D.; Aquat Toxicol. 22, 163-179, 1992.
[4] Watt, S.; "The Elements Cobalt", Marshall Cavendish, New York, 2007.
[5] Kumbasar, R.A.; Sep. Purif. Technol. 68, 208-215, 2009.
[6] León, G., Guzmán, M.A.; Desalination 162, 211-215, 2004.
[7] Gómez-Lahoz, C.; García-Herruzo, F.; Rodríguez-Maroto, J.M.; Rodríguez, J.; J. Water Res. 27, 985-992, 1993.
[8] Oustadakis, P.; Agatzini-Leonardou, S.; Tsakiridis, P.E.; Miner. Eng. 19, 1204-1211, 2006.
[9] Kim, J.S.; Keane, M.A.; J. Chem. Technol. Biotechnol. 77, 633-640, 2002.
[10] Blitz-Raitha, A.H., Paimina, R., Cattrallb, R.W., Kolev, S.D.; Talanta 71, 419-423, 2007.
[11] Travieso, L.; Pellón, A.; Benı́tez, F.; Sánchez, E.; Borja, R.; O’Farrill, N.; Weiland, P.; Biochem. Eng. J. 12, 87-91, 2002.
[12] Vijayaraghavana, K.; Jeganb, J.; Palaniveluc, K.; Velan, M.; Chemosphere 60, 419-426, 2005.
[13] Netzer, A.; Hughes, D.E.; Water Res. 18, 927-933, 1984.
[14] Tounsadi, H.; Khalidi, A.; Farnane, M.; Abdennouri, M.; Barka, N.; Process Saf. Environ. 102, 710-723, 2016.
[15] Preston, J.S.; Sep. Sci. Technol. 17, 1697-1718, 1982.
[16] Swain, B.; Cho, S.S.; Lee, G.H.; Lee, C.G.; Uhm, S.; Appl. Chem. Eng. 26, 631-639, 2015.
[17] Gega, J.; Walkowiak, W.; Gajda, B.; Sep. Purif. Technol. 22–23, 551-558, 2001.
[18] Gupta, S.; Chakraborty, M.; Murthy, Z.V.P.; "Reference Module in Chemistry, Molecular Sciences and Chemical Engineering", New York, Elsevier, 2013.
[19] Hachemaoui, A.; Belhamel, K.; Inter. J. Miner. Process 161, 7-12, 2017.
[20] Swain, B.; Jeong, J.; Lee, J.C.; Lee, G.H.; J. Mem. Sci. 288, 139-148, 2007.
[21] Vernekar, P.V.; Jagdale, Y.D.; Patwardhan, A.W.; Patwardhan, A.V.; Ansari, S.A.; Mohapatra, P.K.; Manchanda, V.K.; Chem. Eng. Res. Des. 91, 141-157, 2013.
[22] Verbeken, K.; Vanheule, B.; Pinoy, L.; Verhaege, M.; J. Chem. Technol. Biotechnol. 84, 711-715, 2009.
[23] Parhi, P.K.; Sarangi, K.; Sep. Purif. Technol. 59, 169-174, 2008.
[24] Kumbasar, R.A.; Tutkun, O.; Desalination, 224, 201-208, 2008.
[25] Kumbasar, R.A.; J. Ind. Eng. Chem. 18, 2076-2082, 2012.
[26] Surucu, A.; Eyupoglu, V.; Tutkun, O.; J. Ind. Eng. Chem. 18, 629-634, 2012.
[27] Van de Voorde, I.; Pinoy, L.; Courtijn, E.; Verpoort, F.; Hydrometallurgy 78, 92-106, 2005.
[28] Kasaini, H.; Nakashio, F.; Goto, M.; J. Mem. Sci. 146, 159-168, 1998.
[29] Sadyrbaeva , Z.T.; Desalination 365, 167-175, 2015.
[30] Yıldız, Y.; Manzak, A.; Tutkun, O.; Desalination Water Treat. 53, 1246-1253, 2015.
[31] Marczenko, Z.; Balcerzak, M; "Separation, Preconcentration and Spectrophotometry in Inorganic Analysis", Elsevier, New York, 2000