Effect of Welding Processing Parameters on FSW of Aerospace Grade Aluminum Alloys
محورهای موضوعی : Manufacturing process monitoring and control
1 - Department of Mechanical Engineering, Payam Noor University, Tehran, Iran
کلید واژه: FSW, Rotational Speed, Traverse Speed, Tensile, FEM,
چکیده مقاله :
This study aimed to investigate the influence of rotational and traverse speeds on the friction stir welding (FSW) of aerospace-grade aluminum alloys. To achieve this, a thermo-mechanically coupled 3D finite element analysis (FEM) was employed to analyze the impact of these speeds on temperature and strain. Additionally, tensile tests were conducted on welded joints fabricated using varying tool rotational and traverse speeds to examine the effects of welding speed on the tensile properties of the specimens. The results revealed that high welding speeds had a detrimental effect on the mechanical properties of the weld samples. Samples produced using an optimal rotational speed of 1200 rpm and a traverse speed of 40 mm exhibited a tensile strength of 346 MPa, which accounts for approximately 64% of the strength seen in the base material.
This study aimed to investigate the influence of rotational and traverse speeds on the friction stir welding (FSW) of aerospace-grade aluminum alloys. To achieve this, a thermo-mechanically coupled 3D finite element analysis (FEM) was employed to analyze the impact of these speeds on temperature and strain. Additionally, tensile tests were conducted on welded joints fabricated using varying tool rotational and traverse speeds to examine the effects of welding speed on the tensile properties of the specimens. The results revealed that high welding speeds had a detrimental effect on the mechanical properties of the weld samples. Samples produced using an optimal rotational speed of 1200 rpm and a traverse speed of 40 mm exhibited a tensile strength of 346 MPa, which accounts for approximately 64% of the strength seen in the base material.
[1] Mishra, R.S. and Ma, Z. 2005. Friction stir welding and processing. Materials Science and Engineering: R: Reports. 50:1-78. doi:10.1016/j.mser.2005.07.001.
[2] HajimohamadzadehTorkambour, S., Nejad, M.J., Pazoki, F., Karimi, F. and Heydari, A. 2024. Synthesis and characterization of a green and recyclable arginine-based palladium/CoFe2O4 nanomagnetic catalyst for efficient cyanation of aryl halides. RSC Advances. 14(20):14139-14151. doi:10.1039/D4RA01200C.
[3] Kumar Rajak, D., Pagar, D.D., Menezes, P.L. and Eyvazian, A. 2020. Friction-based welding processes: friction welding and friction stir welding. Journal of Adhesion Science and Technology. 34:2613-2637. doi:10.1080/01694243.2020.1780716.
[4] Fratini, L. and Pasta, S. 2005. Fatigue resistance of AA2024-T4 friction stir welding joints: influence of process parameters. Structural Durability & Health Monitoring. 1:245. doi:10.3970/sdhm.2005.001.245.
[5] Costa, J., Ferreira, J. and Borrego, L. 2011. Influence of spectrum loading on fatigue resistance of AA6082 friction stir welds. International Journal of Structural Integrity. 2:122-134. doi:10.1108/17579861111135888.
[6] Lumsden, J., Mahoney, M., Rhodes, C. and Pollock, G. 2003. Corrosion behavior of friction-stir-welded AA7050-T7651. Corrosion. 59. doi:10.5006/1.3277553.
[7] Moreto, J., Dos Santos, M., Ferreira, M., Carvalho, G., Gelamo, R., Aoki, I.V., Taryba, M., Bose Filho, W.W. and Fernandes, J. 2021. Corrosion and corrosion-fatigue synergism on the base metal and nugget zone of the 2524-T3 Al alloy joined by FSW process. Corrosion Science. 182:109253. doi:10.1016/j.corsci.2021.109253.
[8] Chien, C.-H., Lin, W.-B. and Chen, T. 2011. Optimal FSW process parameters for aluminum alloys AA5083. Journal of the Chinese Institute of Engineers. 34:99-105. doi:10.1080/02533839.2011.553024.
[9] Su, J.-Q., Nelson, T.W. and Sterling, C.J. 2005. Microstructure evolution during FSW/FSP of high strength aluminum alloys. Materials Science and Engineering: A. 405:277-286. doi:10.1016/j.msea.2005.06.009.
[10] Lee, W.-B. and Jung, S.-B. 2004. The joint properties of copper by friction stir welding. Materials Letters. 58:1041-1046. doi:10.1016/j.matlet.2003.08.014.
[11] Sakthivel, T. and Mukhopadhyay, J. 2007. Microstructure and mechanical properties of friction stir welded copper. Journal of Materials Science. 42:8126-8129. doi:10.1007/s10853-007-1666-y.
[12] Eslami, N., Hischer, Y., Harms, A., Lauterbach, D. and Böhm, S. 2019. Optimization of process parameters for friction stir welding of aluminum and copper using the taguchi method. Metals. 9:63. doi:10.3390/met9010063.
[13] Ahmed, M.M., El-Sayed Seleman, M.M., Fydrych, D. and Çam, G. 2023. Friction stir welding of aluminum in the aerospace industry: The current progress and state-of-the-art review. Materials. 16:2971. doi:10.3390/ma16082971.
[14] Prater, T. 2014. Friction stir welding of metal matrix composites for use in aerospace structures. Acta Astronautica. 93:366-373. doi:10.1016/j.actaastro.2013.07.023.
[15] Mishra, A. and Dixit, D. 2018. Friction stir welding of aerospace alloys. Journal of Mechanical Engineering. 48:37-46.
[16] Omer, M.A., Rashad, M., Elsheikh, A.H. and Showaib, E.A. 2022. A review on friction stir welding of thermoplastic materials: Recent advances and progress. Weld World. 1-25. doi:10.1007/s40194-021-01178-0.
[17] Akbari, M., Rahimi Asiabaraki, H., Hassanzadeh, E. and Esfandiar, M. 2023. Simulation of dissimilar friction stir welding of AA7075 and AA5083 aluminium alloys using Coupled Eulerian–Lagrangian approach. Welding International. 37:174-184. doi:10.1080/09507116.2023.2205035.
[18] Shahnazari, M.R. and Esfandiar, M. 2018. Capillary Effects on Surface Enhancement in a Non-Homogeneous Fibrous Porous Medium. Mechanics of Advanced Composite Structures. 5:83-90. doi:10.22075/macs.2017.1558.1074.
[19] Sambasivam, S., Gupta, N., Singh, D.P., Kumar, S., Giri, J.M. and Gupta, M. 2023. A review paper of FSW on dissimilar materials using aluminum. Materials Today: Proceedings (In Press). doi:10.1016/j.matpr.2023.03.304.
[20] Saadati, S. and Esfandiar, M. 2020. Partial and full β-bromination of meso-tetraphenylporphyrin: Effects on the catalytic activity of the manganese and nickel complexes for photo oxidation of styrene in the presence of molecular oxygen and visible light. Journal of Organometallic Chemistry. 924:121464. doi:10.1016/j.jorganchem.2020.121464.
[21] Esfandiar, M., Nikan, F. and Shahnazari, M.R. 2017. Catalytic pyrolysis of coal particles in a fluidized bed: Experiments and modeling. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 39:1478-1483. doi:10.1080/15567036.2016.1278488.
[22] Seshu Kumar, G., Kumar, A., Rajesh, S., Chekuri, R.B.R. and Ramakotaiah, K. 2023. An experimental study and parameter optimization of FSW for welding dissimilar 6061 and 7075 Al alloys. International Journal on Interactive Design and Manufacturing. 17:215-223. doi:10.1007/s12008-022-00913-1.
[23] Anandan, B. and Manikandan, M. 2023. Effect of welding speeds on the metallurgical and mechanical property characterization of friction stir welding between dissimilar aerospace grade 7050 T7651-2014A T6 aluminium alloys. Materials Today Communications. 35:106246. doi:10.1016/j.mtcomm.2023.106246.
[24] Anton Savio Lewise, K. and Edwin Raja Dhas, J. 2022. FSSW process parameter optimization for AA2024 and AA7075 alloy. Materials and Manufacturing Processes. 37:34-42. doi:10.1080/10426914.2021.1962532.
[25] Kumar, J., Kumar, G., Mehdi, H. and Kumar, M. 2023. Optimization of FSW parameters on mechanical properties of different aluminum alloys of AA6082 and AA7050 by response surface methodology. International Journal on Interactive Design and Manufacturing. 18:1359–1371. doi: doi:10.1007/s12008-023-01425-2.
[26] Bijanrostami, K., Barenji, R.V. and Hashemipour, M. 2017. Effect of traverse and rotational speeds on the tensile behavior of the underwater dissimilar friction stir welded aluminum alloys. Journal of Materials Engineering and Performance. 26:909-920. doi:10.1007/s11665-017-2506-0.
[27] Bilgin, M.B. and Meran, C. 2012. The effect of tool rotational and traverse speed on friction stir weldability of AISI 430 ferritic stainless steels. Materials & Design. 33:376-383. doi:10.1016/j.matdes.2011.04.013.
[28] Khan, N.Z. and Bajaj, D., Siddiquee, A.N., Khan, Z.A., Abidi, M.H., Umer, U. and Alkhalefah, H. 2019. Investigation on effect of strain rate and heat generation on traverse force in FSW of dissimilar aerospace grade aluminium alloys. Materials. 12:1641. doi:10.3390/ma12101641.
[29] Salari, E., Jahazi, M., Khodabandeh, A. and Ghasemi-Nanesa, H. 2014. Influence of tool geometry and rotational speed on mechanical properties and defect formation in friction stir lap welded 5456 aluminum alloy sheets. Materials & Design. 58:381-389. doi:10.1016/j.matdes.2014.02.005.
[30] Zhao, Y., Han, J., Domblesky, J.P., Yang, Z., Li, Z. and Liu, X. 2019. Investigation of void formation in friction stir welding of 7N01 aluminum alloy. Journal of Manufacturing Processes. 37:139-149. doi:10.1016/j.jmapro.2018.11.019.
[31] Asadi, P., Aliha, M.R.M., Akbari, M., Imani, D.M. and Berto, F. 2022. Multivariate optimization of mechanical and microstructural properties of welded joints by FSW method. Engineering Failure Analysis. 140:106528. doi:10.1016/j.engfailanal.2022.106528.
[32] Akbari, M. and Rahimi Asiabaraki, H. 2023. Modeling and optimization of tool parameters in friction stir lap joining of aluminum using RSM and NSGA II. Welding International. 37:21-33. doi:10.1080/09507116.2022.2164530.
[33] Dialami, N., Chiumenti, M., Cervera, M., Segatori, A. and Osikowicz, W. 2017. Enhanced friction model for Friction Stir Welding (FSW) analysis: Simulation and experimental validation. International Journal of Mechanical Sciences. 133:555-567. doi:10.1016/j.ijmecsci.2017.09.022.
[34] Sibalic, N. and Vukcevic, M. 2019. Numerical simulation for FSW process at welding aluminium alloy AA6082-T6. Metals. 9:747. doi:10.3390/met9070747.
[35] Eskandari, E., Alimoradi, H., Pourbagian, M. and Shams, M. 2022. Numerical investigation and deep learning-based prediction of heat transfer characteristics and bubble dynamics of subcooled flow boiling in a vertical tube. Korean Journal of Chemical Engineering. 39:3227-3245. doi:10.1007/s11814-022-1267-0.
[36] Guerdoux, S. and Fourment, L. 2009. A 3D numerical simulation of different phases of friction stir welding. Modelling and Simulation in Materials Science and Engineering. 17:075001. doi:10.1088/0965-0393/17/7/075001.
[37] Zhu, Y., Chen, G., Chen, Q., Zhang, G. and Shi, Q. 2016. Simulation of material plastic flow driven by non-uniform friction force during friction stir welding and related defect prediction. Materials & Design. 108:400-410. doi:10.1016/j.matdes.2016.06.119.
[38] Türkan, M. and Karakaş, Ö. 2022. Numerical modeling of defect formation in friction stir welding. Materials Today Communications. 31:103539. doi:10.1016/j.mtcomm.2022.103539.
[39] Dialami, N., Cervera, M. and Chiumenti, M. 2020. Defect formation and material flow in friction stir welding. European Journal of Mechanics-A/Solids. 80:103912. doi:10.1016/j.euromechsol.2019.103912.
[40] Grujicic, M., Ramaswami, S., Snipes, J., Avuthu, V., Galgalikar, R. and Zhang, Z. 2015. Prediction of the grain-microstructure evolution within a Friction Stir Welding (FSW) joint via the use of the Monte Carlo simulation method. Journal of Materials Engineering and Performance. 24:3471-3486. doi:10.1007/s11665-015-1635-6.
[41] Dialami, N., Cervera, M. and Chiumenti, M. 2018. Numerical modelling of microstructure evolution in friction stir welding (FSW). Metals. 8:183. doi:10.3390/met8030183.
[42] Alimoradi, H., Eskandari, E., Pourbagian, M. and Shams, M. 2022. A parametric study of subcooled flow boiling of Al2O3/water nanofluid using numerical simulation and artificial neural networks. Nanoscale and Microscale Thermophysical Engineering. 26(2–3):129–159. doi:10.1080/15567265.2022.2108949.
[43] Khodaverdizadeh, H., Mahmoudi, A., Heidarzadeh, A. and Nazari, E. 2012. Effect of friction stir welding (FSW) parameters on strain hardening behavior of pure copper joints. Materials & Design. 35:330-334. doi:10.1016/j.matdes.2011.09.058.
[44] Koilraj, M., Sundareswaran, V., Vijayan, S. and Koteswara Rao, S.R. 2012. Friction stir welding of dissimilar aluminum alloys AA2219 to AA5083 – Optimization of process parameters using Taguchi technique. Materials & Design. 42:1-7. doi:10.1016/j.matdes.2012.02.016.
[45] Radisavljevic, I., Zivkovic, A., Radovic, N. and Grabulov, V. 2013. Influence of FSW parameters on formation quality and mechanical properties of Al 2024-T351 butt welded joints. Transactions of Nonferrous Metals Society of China, 23:3525-3539. doi: 10.1016/S1003-6326(13)62897-6.
[46] Akbari, M., Aliha, M.R.M. and Berto, F. 2023. Investigating the role of different components of friction stir welding tools on the generated heat and strain. Forces in Mechanics. 10:100166. doi:10.1016/j.finmec.2023.100166.
[47] Asadi, P., Mahdavinejad, R.A. and Tutunchilar, S. 2011. Simulation and experimental investigation of FSP of AZ91 magnesium alloy. Materials Science and Engineering: A. 528:6469-6477. doi:10.1016/j.msea.2011.05.035.
[48] Buffa, G., Ducato, A., Fratini, L. 2013. FEM based prediction of phase transformations during Friction Stir Welding of Ti6Al4V titanium alloy. Materials Science and Engineering: A. 581:56-65. doi:10.1016/j.msea.2013.06.009.
[49] Esfandiar, M., Pourabdi, G., Akbari, M. and Eskandari, E. 2023. Numerical study and analysis of thermal parameters of subcooled flow boiling and presentation of prediction models based on artificial neural network algorithm. Karafan Quarterly Scientific Journal. 20:151-173. doi:10.48301/kssa.2023.388017.2469.
[50] Buffa, G., Hua, J., Shivpuri, R. and Fratini, L. 2006. A continuum based fem model for friction stir welding—model development. Materials Science and Engineering: A. 419:389-396. doi:10.1016/j.msea.2005.09.040.
[51] Ghangas, G., Singhal, S., Dixit, S., Goyat, V. and Kadiyan, S. 2023. Mathematical modeling and optimization of friction stir welding process parameters for armor-grade aluminium alloy. International Journal on Interactive Design and Manufacturing. 17:2323-2340. doi:10.1007/s12008-022-01000-1.
[52] Maurya, S.K., Kumar, R., Mishra, S.K., Sharma, A., Yadav, A.S. and Kar, V.R. 2022. Friction stir welding of cast aluminum alloy (A319): Effect of process parameters. Materials Today: Proceedings. 56:1024-1033. doi:10.1016/j.matpr.2022.03.271.
[53] Panwar, R. and Chandna, P. 2023. Multi-objective optimization of FSW aviation-grade AA8090 alloy: an RSM-based design approach. Aircraft Engineering and Aerospace Technology. 95:1560-1569. doi:10.1108/AEAT-12-2022-0337.
[54] Chaudhary, B., Jain, N.K. and Murugesan, J. 2022. Experimental investigation and parametric optimization of friction stir powder additive manufacturing process for aerospace-grade Al alloy. The International Journal of Advanced Manufacturing Technology. 123:603-625. doi:10.1007/s00170-022-10211-5.
[55] Abd Elnabi, M.M., El Mokadem, A. and Osman, T. 2022. Optimization of process parameters for friction stir welding of dissimilar aluminum alloys using different Taguchi arrays. The International Journal of Advanced Manufacturing Technology. 121:3935-3964. doi:10.1007/s00170-022-09531-3.
[56] Mehdi, H., Batra, L., Singh, A.P. and Malla, C. 2023. Multi-response optimization of FSW process parameters of dissimilar aluminum alloys of AA2014 and AA6061 by response surface methodology (RSM). International Journal on Interactive Design and Manufacturing. 1-16. doi:10.1007/s12008-023-01409-2.