Developing Area Yield Crop Insurance under Alternative Parametric Methods: Case study for Wheat in East Azarbaijan Province, Iran
محورهای موضوعی : Farm Managementمحمد قهرمانزداه 1 , حسین راحلی 2 , طراوت عارف عشقی 3 , قادر دشتی 4
1 - داشنیار گروه اقتصاد کشاورزی، دانشگاه تبریز
2 - داشنیار گروه اقتصاد کشاورزی، دانشگاه تبریز
3 - دانشآموخته دکتری گروه اقتصاد کشاورزی، دانشگاه تبریز
4 - استاد گروه اقتصاد کشاورزی، دانشگاه تبریز
کلید واژه: Wheat, parametric distribution, premium rate, Area-yield crop insurance,
چکیده مقاله :
In crop insurance design, the yield guarantee and the premium are very important parameters, both of which depend upon the yield distribution. Accordingly, the accurate modeling of yield distribution is essential for designing crop insurance contracts. This study employs historical county-level yield data for irrigated and dry wheat in East Azarbaijan Province, Iran for 1975-2013 to evaluate the effects of five alternative parametric distributions and generate the area yield crop insurance premiums. Results indicated that, in almost all cases, the premium rates with alternative distributions significantly differed from each other and that the beta distribution fitted the data the best except for some series for which the weibull distribution was the best. The results showed that premiums for wheat vary from 246,000 IRR per hectare in the coverage of 65% for Miyaneh to 460,000 IRR per hectare for Tabriz, and for dry wheat they vary from 265,000 IRR per hectare for Tabriz to 680,000 IRR per hectare for Maragheh. Moreover, it was found that the calculated premiums were less than traditional premiums, which would be affordable for both insured and insurers. The insured will pay lower premiums, and because the new methods are used to calculate the indemnities in this contract, and therefore there is no need for attending in individual farms to calculate the loss; it will be useful for the insurers, too.
در طراحی بیمه عملکرد منطقه ای، سطح تعهد و نرخ حق بیمه، پارامترهای بسیار مهمی هستند که هر دوی آنها بستگی به توزیع عملکرد محصول دارند. از اینرو، الگوسازی دقیق توزیع عملکرد برای طراحی قراردادهای بیمه محصول ضروری میباشد. این پژوهش با استفاده از داده های سری زمانی عملکرد گندم آبی و دیم در شهرستانهای استان آذربایجان شرقی، به بررسی اثرات پنج توزیع پارامتریک آلترناتیو و تعیین حق بیمه عملکرد منطقهای در دوره زمانی 1354 تا 1392 میپردازد. نتایج بدست آمده حاکی است که تقریباً در تمامی موارد، نرخهای حق بیمه برآورد شده با استفاده از توزیع های آلترناتیو، به طور معنی داری از یکدیگر متفاوتند و توزیع بتا به استثناء چند مورد که برای آنها توزیع ویبول توزیع مناسبتری است مناسبترین توزیع میباشد. بنا بر نتایج بدست آمده، مقادیر حق بیمه برای گندم آبی از 246000 ریال در هر هکتار در سطح پوشش 65 درصد برای شهرستان میانه تا 460000 ریال در هر هکتار برای شهرستان تبریز تغییر میکند و برای گندم دیم، مقدار حق بیمه از 265000 ریال برای شهرستان تبریز تا 860000 ریال در هر هکتار برای شهرستان مراغه متغیر است. افزون بر این نتایج حاکی است که حق بیمه های محاسبه شده مقادیر کمتری نسبت به حقبیمههای سنتی دارند که برای بیمه شونده و بیمه گر قابل اجرا میباشند چرا که بیمه شوندگان مبالغ حق بیمه کمتری را پرداخت مینمایند و از آنجا که در بیمه عملکرد منطقه ایی به منظور محاسبه غرامتها از روشهای جدیدی استفاده میشود که دیگر نیازی به حضور در مزارع برای محاسبات میزان خسارت وجود ندارد، برای بیمه گر نیز قابل استفاده است.
Abdullahi Ezzatabadi, M., & Bakhshudeh, M. (2007). Evaluating the possibility of using area yield crop insurance in Iran: A Case Study of Pistachio. Journal of Agricultural Science, 30 (1), 37-50.
Agricultural insurance Fund (2013). Agricultural insurance Fund report in recent years, Department of Management and Planning Services, Tehran, Iran, 1-10, in Farsi. Retrieved From http://www.sbkiran.ir/reports/496.
Barnett, B. (2014). Multiple-peril crop insurance: Successes and challenges. Agricultural Finance Review, 74(2), 200-216.
Burton, J.I. (2014). Three essays on new approaches for agricultural crop insurance premium rate policy. Doctoral dissertation, Graduate Faculty of North Carolina State University, 1-106. Retrieved From https://repository.lib.ncsu.edu/bitstream/handle/1840.16/9591/etd.pdf?sequence=2
Chambers, R.G. (1989). Insurability and moral hazard in agricultural insurance markets. American Journal of Agricultural Economics, 71(3), 604-616.
Chen, S.L., & Miranda, M.J. (2008). Modeling Texas dryland cotton yields, with application to crop insurance actuarial rating. Journal of Agricultural and Applied Economics, 40(01), 239-252.
Coble, K.H., Knight, T.O., Pope, R.D., & Williams, J.R. (1997). An expected-indemnity approach to the measurement of moral hazard in crop insurance. American Journal of Agricultural Economics, 79(1), 216-226.
Day, R.H. (1965). Probability distributions of field crop yields. Journal of Farm Economics, 47(3), 713-741.
Deng, X., Barnett, B.J., Hoogenboom, G., Yu, Y., & y Garcia, A.G. (2008). Alternative crop insurance indexes. Journal of Agricultural and Applied Economics, 40(01), 223-237.
Deng, X., Barnett, B.J., & Vedenov, D.V. (2007). Is there a viable market for Area-Based Crop Insurance? American Journal of Agricultural Economics, 89(2), 508-519.
Goodwin, B.K., & Ker, A.P. (1998). Nonparametric estimation of crop yield distributions: implications for rating group-risk crop insurance contracts. American Journal of Agricultural Economics, 80(1), 139-153.
Goodwin, B.K., & Mahul, O. (2004). Risk modeling concepts relating to the design and rating of agricultural insurance contracts. World Bank Policy Research Working Paper, No, 3392, World Bank Publications, Washington D.C., U.S., 1-38.
Just, R.E., Calvin, L., & Quiggin, J. (1999). Adverse selection in crop insurance: Actuarial and asymmetric information incentives. American Journal of Agricultural Economics, 81(4), 834-849.
Just, R.E., & Weninger, Q. (1999). Are crop yields normally distributed? American Journal of Agricultural Economics, 81(2), 287-304.
Ker, A.P., & Coble, K. (2003). Modeling conditional yield densities. American Journal of Agricultural Economics, 85(2), 291-304.
Ker, A.P., & Goodwin, B.K. (2000). Nonparametric estimation of crop insurance rates revisited. American Journal of Agricultural Economics, 83(2), 463-478.
Lanoue, C. (2010). Evaluating yield models for crop insurance rating. Selected Paper prepared for presentation at the Agricultural & Applied Economics Associations, CAES & WAEA Joint Annual Meeting, Denver, Colorado, 1-25.
Mahul, O., & Stutley, C.J. (2010). Government support to agricultural insurance: Challenges and options for developing countries, World Bank Publications, Washington DC 20433, 1-250.
Ministry of Agriculture-Jahad (2013). Year book, Deputy Director of Planning and Economics, ICT Center publication, Tehran, Iran, 2nd volume, in Farsi, Retrieved From http://www.maj.ir/Portal/Home/Default.aspx?CategoryID=c5c8bb7b-ad9f-43dd-8502-cbb9e37fa2ce
Miranda, M.J., & Farrin, K. (2012). Index insurance for developing countries. Applied Economic Perspectives and Policy, 34(3), 391-427.
Nelson, C.H. (1990). The influence of distributional assumptions on the calculation of crop insurance premia. North Central Journal of Agricultural Economics, 12(1), 71-78.
Ozaki, V.A., Goodwin, B.K., & Shirota, R. (2008). Parametric and nonparametric statistical modelling of crop yield: implications for pricing crop insurance contracts. Applied Economics, 40(9), 1151-1164.
Poudel, M.P., Chen, S.E. & Ghimire, R. (2013). Rice yield distribution and risk assessment in South Asian countries: A statistical investigation. International Journal of Agricultural Management and Development, 3(1), 53-63.
Quiggin, J.C., Karagiannis, G. & Stanton, J. (1993). Crop insurance and crop production: an empirical study of moral hazard and adverse selection. Australian Journal of Agricultural and Resource Economics, 37(2), 95-113.
Ramirez, O.A., McDonald, T.U. & Carpio, C.E. (2010). A flexible parametric family for the modeling and simulation of yield distributions, Journal of Agricultural and Applied Economics, 42(2), 303-319.
Ramirez, O.A, Misra, S. & Field, J. (2003). Crop-Yield Distributions Revisited. American Journal of Agricultural Economics, 85(1), 108–120
Ramirez, O.A. (1997). Estimation and Use of a Multivariate Parametric Model for Simulating Heteroskedastic, Correlated, Nonnormal Random Variables: The Case of Corn Belt Corn, Soybean, and Wheat Yields. American Journal of Agricultural Economics, 79(1), 191–205.
Rasulof, J. (2004). The process of agricultural insurance fund research, 2nd conference of agricultural insurance, development and investment protection, 16th January, Tehran, Iran, 1-13.in Farsi.
Richardson, J.W., Schumann, K.D., & Feldman, P.A. (2008). Simulation and Econometrics to Analyze Risk, Texas A & M University: College Station, TX.
Richardson, J.W., Outlaw, J.L., & Schumann, K. (2010). Kernal density functions to estimate parameters to simulate stochastic variables with sparse data: What’s the best distribution? Risk Analysis’, 1-10, from http://www.witpress.com/elibrary/wit-transactions-on-ecology-and-the-environment/43/21518.
Sherrick, B.J., A. Lanoue, C., Woodard, J.D. Schnitkey G., & D. Paulson N. (2014). Crop yield distributions: fit, efficiency, and performance. Agricultural Finance Review, 74(3), 348-363.
Sherrick, B.J., Zanini, F.C., Schnitkey, G.D., & Irwin, S.H. (2004). Crop insurance valuation under alternative yield distributions. American Journal of Agricultural Economics, 86(2), 406-419.
Shields, D.A. (2015). Federal Crop Insurance: Background and Issues. Congressional Research Service, Library of Congress, 1-24.
Skees, J.R., & Barnett, B.J. (1999). Conceptual and practical considerations for sharing catastrophic/systemic risks. Review of agricultural economics, 21(2), 424-441.
Skees, J.R., Black, J.R., & Barnett, B.J. (1997). Designing and rating an area yield crop insurance contract. American journal of agricultural economics, 79(2), 430-438.
Skees, J. R., & Reed, M. R. (1986). Rate making for farm-level crop insurance: implications for adverse selection. American Journal of Agricultural Economics, 68(3), 653-659.
Smith, V. H., & Glauber, J. W. (2012). Agricultural insurance in developed countries: where have we been and where are we going?. Applied Economic Perspectives and Policy, 363–390.
Smith, V. H., & Goodwin, B. K. (1996).Crop insurance, moral hazard, and agricultural chemical use. American Journal of Agricultural Economics, 78(2), 428-438.
Taylor, C.R. (1990). Two Practical Procedures for Estimating Multivariate Nonnormal Probability Density Functions. American Journal of Agricultural Economics, 72(1),210–17.
Torkamani, j., & Vazirzadeh, S., (2007). Nonparametric method application to determine the agricultural crop insurance premiums, Agricultural Economics, 1(1), 83 -100.
Turvey, C., & Zhao, J. (1999). Parametric and non-parametric crop yield distributions and their effects on all-risk crop insurance premiums. Working paper WP99/05, Department of Agricultural Economics and Business, University of Guelph, 1-23.
Ye, T., Nie, J., Wang, J., Shi, P., & Wang, Z. (2015). Performance of detrending models of crop yield risk assessment: evaluation on real and hypothetical yield data. Stochastic environmental research and risk assessment, 29(1), 109-117.
Zanini, F.C., Sherrick, B.J., Schnitkey, G.D., & Irwin, S.H. (2001).Crop insurance valuation under alternative yield distributions, In NCR-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management, St. Louis, Missouri, 1-39.
Zhang, Q., & Wang, K. (2010). Evaluating production risks for wheat producers in Beijing. China Agricultural Economic Review, 2(2), 200-211.
Zhang, Q., Wang, K., & Boyd, M. (2011).The effectiveness of area-based yield crop risk insurance in China. Human and Ecological Risk Assessment, 17(3), 566-579.
Zhu, Y., Goodwin, B. K., & Ghosh, S. K. (2011). Modeling yield risk under technological change: Dynamic yield distributions and the US crop insurance program. Journal of Agricultural and Resource Economics, 36(1), 192-210.