پیش بینی محصولات بنیادی روغن بابونه Abdicate Matricaria chamomilla L. با استفاده از سیستم شبکه عصبی مصنوعی
محورهای موضوعی : مجله گیاهان زینتینازنین خاکی پور 1 , مهتاب پاینده 2
1 - دانشکده علوم خاکشناسی، واحد سوادکوه، دانشگاه آزاد اسلامی، سوادکوه، ایران
2 - دانشجوی کارشناسی ارشد علوم باغبانی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: نیتروژن, شبکه عصبی مصنوعی (ANN), معادل کربنات کلسیم (CCE), پرسپترون چند لایه,
چکیده مقاله :
هدف از این تحقیق، پیشبینی نسبت و تولید اسانس بابونه با استفاده از یک سیستم شبکه عصبی مصنوعی متکی بر ویژگیهای فیزیکوشیمیایی خاص خاک بود. سایت های مختلف کشت بابونه مورد بررسی قرار گرفت و 100 نمونه خاک به گلخانه منتقل شد. pH، EC، K، OM (ماده آلی)، CCE (معادل کربنات کلسیم) و میزان رس در خاک ها از 8.75 تا 7.94، 1.6 تا 1.0، 381 تا 135، 2.30 تا 0.22، 69 تا 16، و 6.5 متغیر بود. به ترتیب به 32.0 رسید. پارامترهای رشد، درصد اسانس و عملکرد اندازه گیری شد. مدلسازی شبکه عصبی مصنوعی با هدف پیشبینی غلظت و عملکرد اسانس با استفاده از سه مجموعه از ویژگیهای خاک به عنوان پیشبینیکننده انجام شد: نیتروژن (N)، فسفر (P)، پتاسیم (K)، و خاک رس. pH، EC، مواد آلی (OM) و خاک رس. CCE، خاک رس، سیلت، ماسه، N، P، K، OM، pH و EC. در نتیجه، سه تابع انتقال (PTF) با استفاده از پرسپترون چند لایه (MLP) با الگوریتم آموزشی Levenberg-Marquardt برای تخمین محتوای اسانس بابونه فرموله شد. ارزیابی نتایج نشان داد که PTF سوم (PTF3) که با استفاده از تمامی متغیرهای مستقل توسعه یافته است، بالاترین دقت و پایایی را از خود نشان می دهد. علاوه بر این، یافتهها امکان پیشبینی غلظت و عملکرد اسانس بابونه را بر اساس ویژگیهای فیزیکوشیمیایی خاک پیشنهاد کرد. این پیامدهای قابل توجهی برای ارزیابی تناسب زمین، شناسایی مناطق مساعد برای کشت بابونه و برنامه ریزی برای بازده اسانس دارد.
The aim of this research was to forecast the proportion and production of chamomile essential oils by employing an artificial neural network system reliant on specific soil physicochemical characteristics. Various chamomile cultivation sites were explored, and 100 soil samples were transported to the greenhouse. The pH, EC, K, OM (organic matter), CCE (calcium carbonate equivalent), and clay content in the soils ranged from 8.75 to 7.94, 1.6 to 1.0, 381 to 135, 2.30 to 0.22, 69 to 16, and 55.6 to 32.0, respectively. Growth parameters, essential oil percentage, and yield were measured. The artificial neural network modeling aimed to predict essential oil concentration and yield using three sets of soil properties as predictors: Nitrogen (N), phosphorus (P), potassium (K), and clay; pH, EC, organic matter (OM), and clay; CCE, clay, silt, sand, N, P, K, OM, pH, and EC. Consequently, three pedotransfer functions (PTFs) were formulated using the multi-layer perceptron (MLP) with the Levenberg-Marquardt training algorithm to estimate chamomile essential oil content. The evaluation of results indicated that the third PTF (PTF3), developed using all independent variables, exhibited the highest accuracy and reliability. Furthermore, the findings suggested the feasibility of predicting chamomile essential oil concentration and yield based on soil physicochemical properties. This has significant implications for land suitability assessments, identifying areas conducive to chamomile cultivation, and planning for essential oil yields.
Ajili Lahiji, A., Mohammadi Torkashvand, A., Mehnatkesh, A. and Navidi, M. 2018. Status of macro and micro nutrients of olive orchard in northern Iran. Asian Journal of Water, Environment and Pollution, 15(4): 143-148.
Akbar, A., Kuanar, A., Patnaik, J., Mishra, A. and Nayak, S. 2018. Application of artificial neural network modeling for optimization and prediction of essential oil yield in turmeric (Curcuma longa L.). Computers and Electronics in Agriculture, 48: 160-178.
Belal, B.E.A., El-Kenawy, M.A. and Uwakiem, M.K. 2016. Foliar application of some amino acids and vitamins to improve growth, physical and chemical properties of flame seedless grapevines. Egyptian Journal of Horticulture, 43: 123-136.
Benier, G., Kinet, J.M. and Sachs, R.M. 1985. Handbook of flowering, ed. Halevy, H. CRC press. pp. 423-434.
Bennett, W. 1993. Plant nutrient utilization and diagnostic plant symptoms. In: W.F. Bennett (Ed). Nutrient deficiencies and toxicities in crop plants. APS Press, St Paul, Minnesota.
Besalatpour, A.A., Ayoubi, S., Hajabbasi, M.A., Mosaddeghi, M.R. and Schulin, R. 2013. Estimating wet soil aggregate stability from easily available properties in a highly mountainous watershed. Catena, 111: 72-79.
Bocco, M., Willington, E. and Arias, M. 2010. Comparison of regression and neural networks models to estimate solar radiation. Chilean Journal of Agricultural Research, 70: 428-435.
Cecílio Filho, L.A.B., Feltrim, A.L., Mendoza Cortez, J.W., Gonsalves, M.V., Pavani, L.C. and Barbosa, J.C. 2015. Nitrogen and potassium application by fertigation at different watermelon planting densities. Journal of Soil Science and Plant Nutrition, 15 (4): 928-937.
Chrysargyris, A., Xylia, P., Botsaris, G. and Tzortzakis, N. 2017. Antioxidant and antibacterial activities, mineral and essential oil composition of spearmint (Mentha spicata L.) affected by the potassium levels. Industrial Crops and Products, 103: 202-212.
Dai, F., Zhou, Q., Lv, Z., Wang, X. and Liu, G. 2014. Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecological Indicators, 45: 184-194.
Dai, L., Li, Y., Wang, Q., Niu, J., Li, W., Wang, Y., Wang, J., Zhou, Z. and Gao, N. 2022. Chamomile: A review of its traditional uses, chemical constituents, pharmacological activities and quality control studies. Molecules, 28(1): 133. https://doi.org/10.3390/molecules28010133.
Emami, A.S. 1996. Methods of plant analysis, Vol. II. Technical Journal No. 982. Karaj, Iran: Soil and Water Research Institute (In Persian).
Goos, R.G. 1995. A laboratory exercise to demonstrate nitrogen mineralization and immobilization. Journal of Natural Resources and Life Sciences Education, 24: 68-70.
Jat, R.S. and Ahaheat, I.P.S. 2006. Direct and residual effects of vermicomposts, biofertilizer and phosphorus on soil nutrient dynamics and productivity of chickpea-fodder maize sequence. Journal of Sustainable Agriculture, 28(1): 41-54.
Klute, A. 1986. Methods of soil analysis. Part 1: Physical and mineralogical methods. 2nd Edition, American Society of Agronomy and Soil Science Society of America, Madison, USA.
Malakouti, M.J., Karimian, N. and Keshavarz, P. 2008. Determination methods for nutritional deficiencies and recommendations for fertilizer. Office for the Publishing of Scientific Works. Tehran, Iran. (In Persian)
Malakouti, M. J. and Shahabi, A. 2000. Chloro-calcium spraying is an indispensable necessity in improving the qualitative characteristics of apple. Deputy Directorate for the Promotion of TAT. Ministry of Agriculture, Tehran. (In Persian)
Marashi, M., Mohammadi Torkashvand, A., Ahmadi, A. and Esfandyari, M. 2017. Estimation of soil aggregate stability indices using artificial neural network and multiple linear regression models. Spanish Journal of Soil Science, 7: 122-132.
Marashi, M., Mohammadi Torkashvand, A., Ahmadi, A. and Esfandyari, M. 2019. Adaptive neuro-fuzzy inference system: Estimation of soil aggregates stability. Acta Ecologica Sinica, 39: 95-101.
Moghimi, S., Mahdian, M.H., Parvizi, Y. and Masihabadi, M.H. 2014. Estimating effects of terrain attributes on local soil organic carbon content in a semi-arid pastureland. Journal of Biodiversity and Environmental Sciences, 5(2): 67-106.
Mohammadi Torkashvand, A., Ahmadi, A., Gómez, P.A. and Maghoumi, M. 2019. Using artificial neural network in determining postharvest life of kiwifruit. Journal of The Science of Food and Agriculture, 99(13): 5918-5925. https://doi.org/10.1002/jsfa.9866
Mohammadi Torkashvand, A., Ahmadi, A. and Nikravesh, N. 2017. Prediction of kiwifruit firmness using fruit mineral nutrient concentration by artificial neural network (ANN) and multiple linear regressions (MLR). Journal of Integrative Agriculture, 16(7): 1634-1644.
Mohammadi Torkashvand, A., Ahmadipour, A. and Khaneghah, A.M. 2020. Estimation of kiwifruit yield by leaf nutrients concentration and artificial neural network. The Journal of Agricultural Science, 158 (3): 185-193.
Mokhtari Karchegani, P., Ayoubi, Sh., Honarju, N. and Jalalian, A. 2011. Predicting soil organic matter by artificial neural network in landscape scale using remotely sensed data and topographic attributes. Geophysical Research Abstracts, 13, article no. EGU2011-1075. Available online from https://meetingorganizer.copernicus.org/EGU2011/EGU2011-1075.pdf
Niazian, M., Sadat Noori, S. and Abdipour, M. 2018. Artificial neural network and multiple regression analysis models to predict essential oil content of ajowan (Carum copticum L.). 9: 124-131.
Nurzynska-Wierdak, R. 2013. Does mineral fertilization modify essential oil content and chemical composition in medicinal plants? Acta Scientiarum Polonorum Hortorum Cultus, 12: 3-16.
Pacheco, C., Calouro, F., Vieira, S., Santos, F., Neves, N., Curado, F., Franco, J., Rodrigues, S. and Antunes, D. 2008. Influence of nitrogen and potassium on yield, fruit quality and mineral composition of kiwifruit. International Journal of Energy and Environment, 2: 9-15.
Paye, A.L., Miller, R.H. and Keeney, D.R. 1948. Method of soil analysis, Part II., SSSA Inc.
Peng, J., Zhang, Y.Z. and Pang, X.A. 2012. Hyperspectral features of soil organic matter content in South Xinjiang. Arid Land Geography, 55(5): 740–746.
Petronilho, S., Maraschin, M., Delgadillo, I., Coimbra, M.A. and Rocha, S.M. 2011. Sesquiterpenic composition of the inflorescences of Brazilian chamomile (Matricaria recutita L.): Impact of the agricultural practices. Industrial Crops and Products, 34: 1482–1490. doi: 10.1016/j.indcrop.2011.05.005
Poorghadir, M., Mohammadi Torkashvand, A., Mirjalili, S.A. and Moradi, P. 2021. Interactions of amino acids (proline and phenylalanine) and biostimulants (salicylic acid and chitosan) on the growth and essential oil components of savory (Satureja hortensis L.). Biocatalysis and Agricultural Biotechnology, 30: 101815.
Radkowski, A. and Radkowska, I. 2018. Influence of foliar fertilization with amino acid preparations on morphological traits and seed yield of timothy. Plant, Soil and Environment, 64: 209-213.
Rahmani Khalili, M., Asadi, M.E., Mohammadi Torkashvand, A. and Pazira, E. 2020. Regression analysis for yield comparison of saffron as affected by physicochemical properties of the soil, case study in northeast of Iran. Agricultural Research, 9(12): 568-76. https://doi.org/10.1007/s40003-020-00455-6
Savitikadi, P., Jogam, P., Khan Rohela, G., Ellendula, R., Sandhya, D., Rao Allini, V. and Abbagani, S. 2020. Direct regeneration and genetic fidelity analysis of regenerated plants of Andrographis echioides (L.) - An important medicinal plant. Industrial Crops and Products, 155: 112766.
Soltanpour, P.N. and Schwab, A.P. 1977. A new soil test for simultaneous extraction of macro- and micronutrients in alkaline soils. Communication in Soil Science and Plant Analysis, 8: 195-207.
Tashakori, F., Mohammadi Torkashvand, A., Ahmadi, A. and Esfandiari, M. 2020. Comparison of different metthods of estimating saffron yield based on soil properties in Golestan province. Communications in Soil Science and Plant Analysis, 51(13): 1767-1779.
Tofighi Alikhani, T., Tabatabaei, S.J., Mohammadi Torkashvand, A., Khalighi, A. and Talei, D. 2021. Effects of silica nanoparticles and calcium chelate on the morphological, physiological and biochemical characteristics of gerbera (Gerbera jamesonii L.) under hydroponic condition. Journal of Plant Nutrition, 44(7): 1039-1053.
Ubessi, C., Tedesco, S.B., de Bona da Silva, C., Baldoni, M., Krysczun, D.K., Heinzmann, B.M., Rosa, I.A. and Mori, N.C. 2019. Antiproliferative potential and phenolic compounds of infusions and essential oil of chamomile cultivated with homeopathy. Journal of Ethnopharmacology, 239: 111907. doi: 10.1016/j.jep.2019.111907
Upadhyay, R. K. and Patra, D.D. 2011. Influence of secondary plant nutrient (Ca and Mg) on growth and yield of chamomile (Matricaria recutita L.). Asian Journal of Crop Science, 3: 151-157.
Walkley, A.J. and Black, I.A. 1934. Estimation of soil organic carbon by the chromic acid titration method. Soil Science, 37: 29-38.
Wan, W.T., Song, Y.J., Xu, L.J., Xiao, P.G. and Miao, J.H. 2019. Research review and application prospect analysis of matricaria. Modern Chinese Medicine, 21: 260–265. doi: 10.13313/j.issn.1673-4890.20181008002
Zhao, Y.F. 2018. Study on chemical composition and quality standard of Uyghur chamomile. Master’s Thesis. China Academy of Chinese Medical Sciences; Beijing, China.
Zhao, D.S., Han, S.L., Yi, Y.J., Qiu, L., Ren, L.J. and Li, X.X. 2015. Standard operating procedure for standardized planting of local medicinal herb German chamomile. Journal of Anhui Agricultural Sciences, 43: doi: 10.13989/j.cnki.0517-6611.2015.28.028
Zhou, T., Shi, P.J., Luo, J.Y. and Shao, Z.Y. 2008. Estimation of soil organic carbon based on remote sensing and process model. Frontiers of Forestry in China, 3: 139–147.